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Abstract

We introduce a maximum entropy-based analysis tech-
nique for extracting and characterizing rhythmic expression
profiles from DNA microarray hybridization data. These
patterns are clues to discovering genes implicated in cell-
cycle, circadian, and other periodic biological processes.
The algorithm, implemented in a program calledENRAGE

(Entropy-based Rhythmic Analysis of Gene Expression),
treats the task of estimating an expression profile’s period-
icity and phase as a simultaneous bicriterion optimization
problem. Specifically, a frequency domain spectrum is re-
constructed from a time-series of gene expression data, sub-
ject to two constraints: (a) the likelihood of the spectrum
and (b) the Shannon entropy of the reconstructed spectrum.
Unlike Fourier-based spectral analysis, maximum entropy
spectral reconstruction is well suited to signals of the type
generated in DNA microarray experiments. Our algorithm
is optimal, running in linear time in the number of expres-
sion profiles. Moreover, an implementation of our algorithm
runs an order of magnitude faster than previous methods.
Finally, we demonstrate thatENRAGE is superior to other
methods at identifying and characterizing periodic expres-
sion profiles on both synthetic and actual DNA microarray
hybridization data.
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1 Introduction

Certain biological processes are periodic. The cell-cycle
and circadian clock, for example, repeat at well defined and
reliable intervals. Biologists have shown that the expres-
sion patterns of many genes associated these periodic bio-
logical processes are themselves rhythmic. Conversely, the
expression profiles of genes associated with aperiodic bio-
logical processes (e.g., tissue repair) are not rhythmic. The
functional significance of previously uncharacterized genes,
therefore, may be inferred if they exhibit rhythmic patterns
of expression synchronized to some ongoing biological pro-
cess.

DNA microarray experiments are an effective tool for
identifying rhythmic genes when a time-series of expression
levels are collected. Unlike Northern blots and PCR, which
study one gene at a time, time-series experiments using
DNA microarrays reveal the expression patterns of entire
genomes. This allows chronobiologists to assign putative
functional properties to large numbers of genes based on the
results of a single experiment. However, the large volume
of data generated by hybridization experiments makes man-
ual inspection of individual expression profiles impractical.
Separating the subset of genes whose expression profiles are
rhythmic from the thousands, or tens of thousands that are
not, requires computer assistance. Ideally, the algorithms
for analyzing microarray data should be efficient and have
well-understood performance guarantees.

We have designed and implemented an algorithm to
identify and characterize the spectral properties of gene ex-
pression profiles. Our approach specifically addresses the
limitations of Fourier analysis on short time series data
— the kind typically generated in microarray experiments.
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Furthermore, our algorithm is optimal, scaling linearly with
the number of gene expression profiles.

The identification of rhythmic genes from microarray
data may be achieved by computing the frequency-domain
spectrum of each expression profile. Rhythmic genes will
yield spectra that have a single, well-defined peak in fre-
quency space. In contrast, the spectra of non-periodic pro-
files will be (relatively) flat. One might think that traditional
spectral techniques, like the Fourier transform, are appro-
priate for obtaining such spectra. However, due to the cost
of generating each time point, microarray time-series typi-
cally have very few data points. A typical experiment might
have only twelve data points and some have as few as four.
Traditional spectral techniques, including the Fourier trans-
form, do not perform well on short time series. The result-
ing spectra do not have adequate resolution for identifying
and characterizing oscillating genes [22]. The maximum
entropy method (MEM) [29, 26, 5, 24, 32, 3] of spectrum
reconstruction isnot a traditional spectral technique. The
MEM is well-suited for short time series. We show it is
capable of generating smooth, high-resolution spectra from
gene expression profiles.

The use of the MEM represents a significant departure
from previous techniques for identifying periodic gene ex-
pression profiles from microarray data. The dominant meth-
ods for identifying rhythmic genes (e.g., [13, 17, 14]) treat
the task as either a clustering or pattern recognition prob-
lem. Previous algorithms that use hierarchical clustering
(e.g., [13]) run in timeO(n2l), wheren is the number of
genes represented in the microarray data andl is the number
of time-series points. Other algorithms (e.g., [17]) that esti-
mate both the frequency and phase of gene expression pro-
files using pattern recognition run in timeO(nmp l log l),
wherem is the frequency resolution, andp is the phase res-
olution. These methods can take up to a week of wall-clock
CPU time to analyze data from a single gene chip experi-
ment.

Recently, a method [22] has been described that is both
efficient and uses a true mathematical metric to measure
morphological similarity. That algorithm runs in time
O(nml2 + nl3α(l) log l), whereα is the extremely slow-
growing inverse of Ackerman’s function. [22] has been
shown to be more accurate at estimating frequencies and
phases than non-metric based techniques.

In contrast, the algorithm presented below runs in time
O(nl log l). In all cases,l may be treated as a small con-
stant, since in today’s technology,l is never more than a
small constantlmax � n (for example, typically,l ≤ 24,
andn ≈ 15, 000 — See Table 1). This simplification ob-
tains complexity bounds ofO(n2) [13], O(nmp) [17] and
O(nm) [22] for previous algorithms vs.O(n) for ours. Our
algorithm is also, in general, more accurate when determin-
ing the frequency and phase of rhythmic profiles than any

other previous method.

From a complexity-theoretic point of view, [17] provides
a brute-forceO(nmp) time algorithm that takes a week to
run. [22] uses a phase-independent method to eliminate all
complexity dependence on the phase resolutionp, yielding
anO(nm) algorithm that runs in 2 hours on a set of10, 000
expression profiles. Our current paper employs the max-
imum entropy method to eliminate all complexity depen-
dance on frequency resolutionm, resulting in anO(n) al-
gorithm that is theoretically optimal, and runs in 22 seconds
on the same data set on a Pentium-class workstation.

Our chief contributions are as follows:

1. Elucidation of the limitations of the Fourier transform
for the analysis of periodic gene profiles,

2. The use of the maximum entropy method for spectral
reconstruction of DNA microarray time-series data,

3. An optimal algorithm for identifying and characteriz-
ing rhythmic expression profiles,

4. Unlike previous algorithms, our method hasno com-
plexity dependance on frequency resolution,

5. Testing our methods on publicly available gene expres-
sion data and a comparison of the results to previous
methods, and

6. A controlled study of how a variety of methods, includ-
ing our own, perform in a controlled experiment where
signal-to-noise ratio, sample-rate and signal length are
varied in synthetic data sets.

Our paper describes an implementation of Maximum En-
tropy Spectral Analysis (MESA) for rhythmic analysis of
genome-wide expression patterns. To our knowledge, this
is the first application of MESA to gene-expression microar-
ray time-series data. However, MESA has been previously
applied to literally hundreds of problems in the physical and
biological sciences (e.g., cf. Dowse and coworkers, who ap-
ply MESA to behavioral time-series [11, 12, 23]). The
focus of this paper is the improvement in running time and
accuracy conferred by MESA, over previous algorithms, for
time-series microarray analysis.

1.1 Organization of paper

We begin, in Section 2, with a review of the relevant bi-
ology and a summary of three publicly available DNA mi-
croarray hybridization time-series data sets. Section 3 cate-
gorizes existing techniques for extracting rhythmic profiles
from microarray data, including a discussion of their limita-
tions and computational complexity. In section 4, we detail
our method and analyze its computational complexity. Sec-
tion 5 presents the results of the application ofENRAGE to
simulated and real biological data. Finally, section 6 dis-
cusses these results.



2 Background

There are many examples of DNA microarray time-
series experiments in the literature (e.g., [8, 9, 16, 25, 27,
17, 30, 20, 35, 31]). In many of these experiments, the pri-
marily goal was to identify genes whose expression patterns
were periodic over the length of the experiment. For exam-
ple, cell-cycle regulated (e.g., [8, 30]) and circadian (e.g.,
[25, 27, 16, 9, 17, 35, 31]) genes have been identified from
their expression profiles in hybridization experiments.

Several research labs have made their raw data avail-
able to the public via [1] facilitating the development of
improved techniques. The Davis lab at Stanford has re-
leased the yeast data presented in [8] on the CDC28 mutant
of yeast. The Botstein lab has released the data from their
yeast experiment on the CDC15 mutant of yeast presented
in [30]. The Rosbash lab at Brandeis has recently released
the data from their circadian experiment onDrosophilapre-
sented in [25]. In this section we briefly summarize the bi-
ological background relevant to these data sets.

2.1 Yeast andDrosophilaData sets

The CDC15, and CDC28 experiments were designed to
identify cell-cycle regulated genes in yeast (Saccharomyces
cerevisiae). The eukaryotic cell-cycle is the 4 stage process
by which a single cell replicates into two daughter cells.
This process takes about 90 minutes in yeast. The authors
of the CDC15 and CDC28 experiments were looking for
uncharacterized genes whose expression profiles were peri-
odic with 90 minute wavelengths.

The Drosophila data set was generated as part of an
experiment to identify circadian and circadian-regulated
genes. Circadian rhythms are biological processes that are
synchronized to the diurnal cycling of light and dark. The
goal of circadian microarray experiments is to find the genes
associated with the circadian clock. Table 1 details the con-
tent of the CDC15, CDC28 andDrosophiladata sets.

3 Prior Work

A variety of techniques have been developed to ex-
tract the rhythmic genes from microarray data sets. The
techniques fall into two categories:spectral and pattern
matching-based analyses. In this section we discuss each
type, citing specific examples.

3.1 Traditional Spectral Techniques

The Fourier Transform is a standard tool for detecting
periodicities in discretized signals. The limitations of the
Fourier Transform are well understood. The range of de-
tectable frequencies within a signal, and the resolution to

which they can be resolved are particularly relevant to DNA
microarray data. Unfortunately, the frequency resolution
obtainable on short time series, such as those generated in
typical microarray experiments, is often not adequate for re-
solving periodicities of interest [22]. The sampling rate and
sampling interval determine both the range of detectable
frequencies and the resolution to which individual frequen-
cies can be resolved. Shorter time series yield spectra that
are difficult to interpret. For example, [22] proves that the
frequency resolution of the CDC15 data set is 17.9 minutes.
In other words, the wavelengths of two periodic functions
must differ by at least 17.9 minutes in order to be well-
resolved (distinguishable) by the Fourier Transform. This
is a fairly coarse resolution given the goal of finding genes
with 90-minute wavelengths. Indeed, [30] reports that the
Fourier Transform was unstable on the CDC15 data set, and
resorted to a hybrid approach including non-spectral meth-
ods to estimate frequencies. Most researchers have subse-
quently used non-spectral methods, described in the next
section, to analyze their data.

The size limitations on the data sets are typically not bi-
ological but rather financial. Individual microarray chips
can cost hundreds of dollars. A per-chip processing fee,
also in the hundreds of dollars, is typically charged. Fi-
nally, it is necessary replicate the experiment, ideally three
or more times, with new samples and chips in order to get
statistically accurate estimates of mRNA expression levels.
Hence, a DNA microarray time-series experiment can eas-
ily cost tens of thousands of dollars.

3.2 Pattern Matching Techniques

Pattern matching algorithms for gene expression analy-
sis take as input the recorded data, a set of models (patterns)
with known properties and a method for computing the sim-
ilarity between a model and an expression profile. For ex-
ample, the models are typically (a) known periodic gene
expression profiles or (b) ideal, synthetic sinusoids. These
algorithms assign each gene the properties of the model to
which it is most similar.

An important distinction among pattern matching meth-
ods is which similarity measurement is used. The choice
of similarity measurement affects both the complexity and
accuracy of the resulting algorithm. Most clustering algo-
rithms for gene expression profiles use some variation of the
correlation coefficient. Unfortunately, the correlation coef-
ficient is not a particularly good estimator of shape simi-
larity. Consider, for example, two sine waves of the same
frequency that differ in phase by90◦. The correlation coef-
ficient of those two curves is 0, indicating that they are not
similar. Nonetheless, the two shapes have a lot in common.
Furthermore, the correlation coefficient violates thetriangle
inequality[22] and is therefore not a mathematical metric.



Experiment Organism ∆t (minutes) # samples # periods # genes

CDC15 [30] S. cerevisiae 10/20 24 3.2 6178
CDC28 [8] S. cerevisiae 10 17 1.8 6220
Drosophila[25] D. melanogaster 240 6 0.83 14,010

Table 1. CDC15, CDC28 andDrosophiladata sets.∆t indicates the time period between successive time points. If there is more
than one∆t listed, then the data was non-linearly sampled using a combination of the specified times. # periods indicates the number
of cell-cycle periods that fit within the duration of the sample interval.

The triangle inequality requires that given a distance metric
d for comparing expression profiles, for any three expres-
sion profilesX, Y , andZ, d(X, Y ) + d(Y, Z) ≥ d(X, Z).

As argued in [10, 22], the triangle inequality is of partic-
ular importance, because it guarantees that if several model
expression profiles are similar to a given data expression
profile, then these model profiles also must be similar to
one another. Under the correlation coefficient, however, it
is possible for two highly dissimilar model profiles to be
similar to the same data profile for one gene. This is highly
counterintuitive. Before [22], few previous methods used a
similarity measurement that was a true mathematical met-
ric.

In summary, there are a number of problems with the ex-
isting approaches for detecting and characterizing rhythmic
genes in microarray time-series data. Traditional spectral
methods, like the Fourier transform, are not appropriate be-
cause a typical microarray experiment generates relatively
short time-series. Model-based techniques have had more
success on gene expression data but at the expense of com-
putational complexity.

The algorithm presented in [22] addresses many of the
issues associated with model-based analyses. [22] uses a
true metric, the Hausdorff distance [18, 10], when compar-
ing expression profiles. A corresponding improvement in
accuracy was reported. [22] also gives the best complexity
bound to date (O(nm) wheren is the number of genes and
m is the frequency resolution), improving upon the com-
plexity bound ofO(nmp) in [17]. This improvement is ob-
tained through the use of theautocorrelationfunction to
enable a phase-independent search of frequency-space.

The method presented below is very different. The max-
imum entropy method is neither a traditional spectral tech-
nique nor a pattern matching-based technique. In the MEM,
frequency and phase estimates are obtained from frequency-
domain spectra. The crucial difference between the MEM
and a traditional spectral technique ishow those spectra
are obtained. Spectra are obtained indirectly from the data
through the use of statistics. Our method works on mas-
sively parallel data sets (n ≈ 15, 000, l ≤ 24) with time-
series as short asl = 6 points. Finally, our MEM algorithm
runs in timeO(n), which is optimal. We discuss the method

in the next section.

4 Maximum Entropy Spectral Reconstruc-
tion

The Fourier transform produces a spectrum directly from
the data. The MEM produces a spectrum that isconsis-
tent with the data. The MEM treats spectral analysis as an
inverse problem, that of recovering the spectrumF of the
‘true’ expression profile,H. H cannot be observed directly
and must be inferred from the recorded dataD. The dataD
are assumed to be contaminated by noise. Thus,D = H +ε
andF = F(H) whereε is noise andF is the Fourier oper-
ator. H, D, andε are all represented as scalar functions of
time. In the MEM formalism,H is called themodeland the
MEM’s job is to fit the best model to the dataD.

The MEM algorithm strikes a balance between
a goodness-of-fit criterion (realized via a maximum-
likelihood formalism) and the Shannon entropy ofH. By
maximizing entropy, one minimizes the bias of the model
H. That is, one does not impose correlations that are not
supported by the recorded dataD. This is perhaps the most
beneficial property of the maximum entropy method. This
same property also guarantees thatF , the spectrum ofH,
will be smooth, which is also beneficial in the context of
frequency analysis.

H is a variable in the MEM. We desire anH that max-
imizes the conditional probabilityP (H|D). This can be
rewritten, according to Bayes’ formula, as

P (H|D) =
P (H)P (D|H)

P (D)
. (1)

For purposes of maximization, P(D) can be ignored. We can
therefore use

P (H|D) ∝ P (H)P (D|H). (2)

P (D|H) is a goodness-of-fit criterion and, when maximal,
gives themaximum likelihoodsolution for H. When as-
suming Gaussian noise, it can be shown that the maximum
likelihood solution,L(H,D), for D and a specific choice
of H is,



L(H,D) =
−χ2(H,D)

2
(3)

where

χ2(H,D) =
k∑

j=1

|Hj −Dj |2. (4)

Herek is the length of the expression profile.Hj is thejth
time point in the modelH andDj is thejth time point in
the dataD. The probabilityP (D|H) is obtained by expo-
nentiating1 L(H,D):

P (D|H) = exp
(
−χ2(H,D)

2

)
. (5)

The MEM tiesP (H) to the Shannon entropy of the spec-
trumF of H. F is treated as a probability density function
(PDF). The Shannon entropy of a PDFA is

S(A) = −
∑
i∈A

pi ln pi, (6)

wherepi is the probability of theith event inA.
When we treat the spectrumF as a PDF, the amplitude

F (ω) of the spectrum at frequencyω, is interpreted as a
probability. Thus,

S(F ) = −
∑
ω

F (ω) ln F (ω). (7)

Futhermore, because the Fourier operator is an orthonormal
change of basis,S(H) = S(F ). P (H) is then obtained by
exponentiatingS(F ):

P (H) = exp (S(F )). (8)

To maximize Eq. (2), we substitute Eq. (5) forP (D|H)
and Eq. (8) forP (H). The MEM then finds the modelHopt

that maximizes Eq. (2).Hopt is the model with maximum
entropy among those that are most likely givenD. It can
be shown that bothχ2(H,D) andS(H) are convex asH
varies. Therefore, there is an analytical solution for finding
theH that maximizes Eq. (2) (see Sec. 4.1). For more in-
formation on the maximum entropy method, the reader is
directed to [29, 26].

As previously noted,F = F(Hopt). Our algorithm ex-
amines the MEM solution spectrumFG for each geneG in
the data set and determines whether or not the gene is rhyth-
mic. This is accomplished by finding the largest peak in
FG. If the amplitude of that peak is above a chosen thresh-
old, the gene is considered rhythmic. In our experiments
we used a threshold of0 db. The phases and the frequencies
of rhythmic genes are obtained directly from each spectrum

1Formally, Eqs. (5) and (8) must be scaled by their respective partition
functions to be true probabilities. However, for the purposes of maximizing
Eq. (2), scaling isn’t necessary.

FG. Figure 1 demonstrates the difference in quality of spec-
tra generated using the Fourier Transform vs. the MEM.

4.1 Algorithmic Complexity

A number of different numerical techniques have been
developed to compute the MEM reconstruction efficiently
(e.g., [5, 24, 32, 3]). These techniques take advantage of
a mathematical equivalence betweenF and the frequency
response of an all-pole filter derived from the autocorre-
lation of D. The coefficients of that filter can be com-
puted by solving a set of linear equations using a symmetric
Toeplitz matrix built from the autocorrelation coefficients
of D [26]. In our implementation we used the Yule-Walker
method [32]. The complexity of that algorithm isO(l log l).

The algorithmic complexity of our algorithm is as fol-
lows. For a set ofn gene expression profiles, the time
to recover alln maximum entropy spectra isO(nl log l).
This improves upon the previous approaches reviewed in
Secs. 1 and 3, such as theO(n2l) algorithm of [13],
the O(nmp l log l) algorithm of [17], and theO(nml2 +
nl3α(l) log l) algorithm of [22], wherem is the frequency
resolution,p is the phase resolution, andα is the inverse of
Ackerman’s function. Parametersm andp are eliminated in
the MEM approach; they can be large—in [17],m = 1, 000
andp = 101.

We argued in Sec. 1 that becausel is always small, it
can be treated as a constant. The size of a spectrum is
O(l). Therefore, the cost of finding the largest peak within
the spectrum is constant. Consequently, estimating the fre-
quency and phase of each gene is completed in constant
time. Hence, our algorithm runs inO(n) time, which is op-
timal. That is, treatingl asO(1) obtains complexity bounds
of O(n2) [13], O(nmp) [17] andO(nm) [22] for previous
algorithms vs.O(n) for ENRAGE. From a practical point of
view, the brute-forceO(nmp)-time algorithm of [17] takes
a week to run.RAGE [22] provides anO(nm) algorithm
that runs in 2 hours on a set of10, 000 expression profiles.
Our MEM algorithm (ENRAGE) runs in 22 seconds on the
same data set on a Pentium-class workstation.

4.2 Non-linearly Sampled Data

Both the Fourier transform and the Yule-Walker method
for computing maximum entropy spectral reconstructions
assume that the data have been linearly sampled. However,
many microarray time-series data sets (e.g., [30, 20]) are
not linearly sampled. We note that there exist alternative
methods for computing the maximum entropy spectrum on
non-linearly sampled data (e.g., [29]). These methods are
iterative in nature and are, therefore, more complex algo-
rithmically. However these methods do have the advantage



(A)
(B)

Figure 1. (A) A 12-point periodic signal. (B) Upper panel: The spectral analysis of the signal in panel (A) using the Fourier
Transform. Note that the spectrum is essentially flat, making frequency and phase estimation very difficult. Lower panel: The
spectral analysis of the signal in panel (A) using the MEM. Here, there is a clearly defined peak in the correct location, making
frequency estimation straightforward.

of being able to take advantage ofall the data, and not just
a linearly spaced subset of the data.

5 Results

ENRAGE has been applied to both synthetic and real mi-
croarray data. A series of controlled experiments with syn-
thetic data was designed to compare the performance of
ENRAGE, RAGE [22] and a Fourier-based technique. The
Fourier-based method is identical toENRAGE with one ex-
ception: it computes the spectrum of the synthetic signals
using the Fourier Transform and not using the MEM. Syn-
thetic data sets, each consisting of 10,000 synthetic expres-
sion profiles were generated. Each data set contained 5,000
periodic signals (with random phases and frequencies) and
5,000 non-periodic signals. The tasks were to (a) separate
the periodic signals from the non-periodic ones and, (b) es-
timate the frequency and phase of the periodic signal.

In the first experiment, the test variable was the signal to
noise ratio (SNR) of the 5,000 periodic signals. 7 data sets
were constructed. In the first data set, the periodic signals
had no added noise. The SNR of the remaining data sets
were 20:1, 10:1, 6.7:1, 3.3:1, 2.2:1, and 1.7:1.ENRAGE had
fewer false positives and false negatives than eitherRAGE

or the Fourier method. Table 2 shows the results of the ex-
periment with the data set with a 3.3:1 SNR.

In two additional experiments,ENRAGE’s performance
under varying sample rates and sampling intervals was stud-
ied. In all cases,ENRAGE outperforms the other pro-
grams. Furthermore,ENRAGE’s accuracy increased with
either higher sample rates or increased signal length. Fig-
ure 2 summarizesENRAGE’s accuracy at estimating fre-

quency under varying amounts of noise and SNR.

ENRAGE’s performance was also examined on the mi-
croarray data described in Sec. 2.1. The task of any DNA
microarray analysis technique is to find a subset of the genes
with a specified property (e.g., cell cycle-regulated, circa-
dian, etc.). Of course, unlike the synthetic data sets de-
scribed above, the notions of false positives and negatives
are not well-defined. In some biological systems, there exist
genes whose expression profile properties have been well-
characterized in the literature. For example, there are 104
known cell cycle-regulated genes in yeast [34, 7, 28, 21, 2,
15, 33, 19, 6]. Therefore, it is possible to evaluate a given
method in terms of false negatives when such information is
available. However, due to experimental conditions, it pos-
sible for one or more of these known genes to have atypical
expression profiles. It is always necessary to go back to the
data and examine the profiles of genes that one expected to
find.

False positives are much more difficult to evaluate. One
can examine the data and look for gross errors. It is custom-
ary for biologists to use DNA microarrays as highly parallel
screens. Genes with unknown function that exhibit rhyth-
micity are subsequently studied using slower, more tradi-
tional assays.

Direct comparison of the accuracy of multiple tech-
niques on real data is, therefore, best done in terms of false
negatives against known genes. Beyond the known genes, it
is not possible to do quantitative comparisons other than ex-
amining which genes the two methods both identify vs. the
genes that were uniquely identified by each method. Qual-
itative assessments, such the number of genes returned as a
fraction of the entire genome can also be helpful.



Method False Positives False Negatives

ENRAGE 7% 1%
RAGE [22] 42% 5%
FT 53% 33%

Table 2. Summary of the results of three programs run on a synthetic data set with 5,000 non-periodic genes and 5,000 periodic
genes. Each signal was 6 points long. The data in this table were obtained using a data set where the 5,000 periodic genes had a
signal to noise ratio of 3.3:1.

Figure 2. Accuracy of ENRAGE, RAGE [22] and the FT-based estimate under (left panel) decreasing SNR and (right panel)
increasing sample rate. Mean∆ Wavelength is the difference between the predicted wavelength and the actual wavelength.ENRAGE

has consistently higher accuracy than the other two programs. As the SNR becomes lower, the accuracy of all three programs
decreases. The right-hand panel shows thatENRAGE’s accuracy increases as the sample rate increases.

ENRAGE finds 81, or78% of the 104 known cell cycle-
regulated genes in the CDC15 data set and 67, or64% in the
CDC28 data set. It is not uncommon to consider the results
from multiple data sets on the same organism when exam-
ining genetic data (e.g., [4]). By combining theENRAGE re-
sults on the two data sets, 100, or96% of the known genes
are found. In contrast, [30]’s analysis of the same two data
sets yielded only 95, or91% of the 104 known cell-cycle
regulated genes.ENRAGE finds 567 rhythmic genes in both
yeast data sets with wavelengths consistent with the length
of the cell-cycle in yeast. [30]’s analysis finds 800. It is
interesting thatENRAGE’s more conservative estimate actu-
ally finds more of the 104 known cell cycle-regulated genes.

Finally, ENRAGE was used to analyze theDrosophila
data set. Of the 14,010 genes in the complete data set,EN-
RAGE identifies 154 genes as circadian while [25] identifies
134. BothENRAGE and [25] identify 6 of the known cir-
cadian genes (period, timeless, vrille, clock, cryptochrome,
takeout). In all, 104 genes were identified by both [25] and
ENRAGE. Figure 3 shows some of the circadian profiles dis-
covered byENRAGE.

6 Conclusion

Genome-wide RNA expression time-series experiments
are an important source of biological information. The dis-
covery of periodic gene expression profiles is especially
useful for the study of rhythmic processes such as the cell
cycle and the circadian clock. The sheer volume of data
generated by microarray experiments prohibits manual in-
spection of all the data. Therefore, algorithms for identify-
ing rhythmic genes are needed.

Purely Fourier-based techniques are not yet appropri-
ate for microarray data because the number of time-points
in a typical experiment is too small to yield adequate fre-
quency resolution. Model-based techniques are accurate,
but are computationally expensive. We have presented a
novel technique that is fast, computationally optimal, and
substantially more accurate. It gains its efficiency and ac-
curacy through the use of the maximum entropy method of
spectrum reconstruction.
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Figure 3. (A,B) Representative clusters from results onDrosophilamicroarray data. Panel A shows the expression patterns of
the 47 genesENRAGE identified as circadian and having a phase offset of 0 hours. Panel B shows the expression patterns of the 20
genesENRAGE identified as circadian and having a phase offset of 12 hours. (C) Expression profiles of the known circadian genes
(period, timeless, vrille, clock, cryptochrome, takeout) (D) The 6ENRAGE spectra for the 6 known circadian genes.
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