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Abstract

We have developed an algorithm called Q5 for probabilistic classification of healthy vs. disease
whole serum samples using mass spectrometry. The algorithm employs Principal Components
Analysis (PCA) followed by Linear Discriminant Analysis (LDA) on whole spectrum Surface-
Enhanced Laser Desorption/Ionization Time of Flight (SELDI-TOF) Mass Spectrometry (MS)
data, and is demonstrated on four real datasets from complete, complex SELDI spectra of human
blood serum.

Q5 is a closed-form, exact solution to the problem of classification of complete mass spectra
of a complex protein mixture. Q5 employs a probabilistic classification algorithm built upon a
dimension-reduced linear discriminant analysis. Our solution is computationally efficient; it is
non-iterative and computes the optimal linear discriminant using closed-form equations. The
optimal discriminant is computed and verified for datasets of complete, complex SELDI spectra
of human blood serum. Replicate experiments of different training/testing splits of each dataset
are employed to verify robustness of the algorithm. The probabilistic classification method
achieves excellent performance. We achieve sensitivity, specificity, and positive predictive values
above 97% on three ovarian cancer datasets and one prostate cancer dataset. The Q5 method
outperforms previous full-spectrum complex sample spectral classification techniques, and can
provide clues as to the molecular identities of differentially-expressed proteins and peptides.
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1 Introduction∗

Mass Spectrometry (MS) is a powerful tool for determining the masses of biomolecules and biomolec-
ular fragments present in a complex sample mixture. The role of MS is similar to that played by
2D-gels in complex proteomic applications. Unlike gel electrophoresis, MS provides ultra-high res-
olution mass information. A mass spectrum consists of a set of m/z values and corresponding
relative intensities that are a function of all ionized molecules present with that m/z ratio. The
mass spectrum observed for a sample is thus a function of the molecules present. Experimental
conditions that affect the molecular composition of a sample should therefore affect its mass spec-
trum. Mass spectrometry is therefore often used to test for the presence or absence of one or more
molecules. The presence of such molecules may indicate a particular enzymatic activity, disease
state, cell type, or condition. We refer to a solution from one of these ‘states’ containing one or
more biomolecules as a sample.

Analysis of mass spectra by manual inspection has been feasible for samples containing a small
number of molecules. These manual inspection techniques are impractical however, for samples
containing a large number of protein fragments. Moreover, samples containing a large number
of protein fragments tend to be the most interesting and have the potential to provide the most
novel results. Recently, a number of algorithms have been developed to find spectral differences
between mass spectra of samples taken from two separate conditions [7, 15, 34, 16, 14]. The
discrimination of one condition from another by comparing their mass spectra is the goal of Mass
Spectrometry Classification Algorithms (MSCAs). Several MSCAs have been developed for human
disease diagnosis as well as monitoring disease progression, regression, and recurrence [7, 25, 26,
5, 28, 3]. Given two states, we would like to know the answers to two questions: I) do molecular
differences exist between the two states? and II) if molecular differences do exist, what molecules
cause these differences? In mass spectrometry, question II) can be split into two parts: (a) what
are the mass/charge ratios of the differently-expressed molecules? and (b) what are the molecular
identities of the differently-expressed molecules? Given only the answers to I) and IIa), sample
classification can, in principle, be performed. Many previous MSCAs [28, 3, 25, 7] answer I) but
provide only a partial, incomplete answer to IIa). That is, many previous algorithms discover only
a subset, rather than the full set, of discriminating m/z peaks. Moreover, the peaks in this subset
are not guaranteed to be differentially expressed between the two states.

An MSCA can be tested empirically by comparing its accuracy to known MS data classifications,
and by measuring its running time. Therefore, we compare results of our algorithm, Q5, to known
assignments of MS data, and we also report that Q5 runs in minutes. This provides benchmarks,
by calibration with ground truth. We motivate and define an objective error function by which
linear classifiers of an MSCA can be evaluated. The classifier computed by Q5 is optimal under
this error function with respect to the training set. Our characterization is twofold: (1) Complexity
measures the running time of the algorithm. (2) Correctness measures how well Q5 minimizes the
error function. We cast the MS classification problem into closed-form equations and then solve
them using singular value decomposition, hence:

1. Q5 is a combinatorially precise algorithm: we can prove that the training runtime is O(n3 +
n2r) and the testing runtime is O(mrn), where n is the number of training spectra, m is the

∗Abbreviations used: BPH, benign prostatic hypertrophy; CFES, closed-form exact solution; LDA, linear discrim-
inant analysis; MALDI, matrix-assisted laser desorption/ionization; MS, mass spectrometry; MSCA, mass spectrom-
etry classification algorithm; OC, ovarian cancer; PC, prostate cancer; PCA, principal components analysis; PPV,
positive predictive value; PSA prostate specific antigen; SELDI-TOF, surface-enhanced laser desorption/ionization
time of flight.
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number of testing spectra, and r is the resolution of each mass spectrum.

2. Q5 always computes the optimal solution (with respect to the error function) using closed-
form equations.

For exact algorithms such as ours, properties (1) and (2) can be proven mathematically. Hence,
one can formally understand and analyze why a technique performs well, or poorly. We caution
however, that exact does not necessarily imply perfect performance on biological data: it means the
algorithm is guaranteed to optimize an objective error criterion that measures how well the (noisy)
data is classified. In contrast, techniques such as genetic algorithms [28], neural networks [7, 14], and
simulated annealing do not admit such guarantees: these methods have neither provable complexity
nor correctness properties, and they are neither exact nor combinatorially precise.

We present a closed-form exact algorithm to answer questions I) and IIa) above. Moreover,
Q5 computes the complete set of m/z peaks that are differentially expressed in one state vs. the
other. This information is valuable because these peaks aid in the identification of proteins that are
differentially present in each state. That is, a complete exact answer to IIa) is potentially helpful
in determining the answer to IIb).

If each spectrum is sampled at the same m/z values then we can represent each spectrum as a
point in an r-dimensional space, where r is the number of m/z values for which relative intensities
are recorded per spectrum. We call this space spectral-space. Each spectrum is therefore represented
in spectral-space by the point (p1, . . . , pr), where pi is the relative intensity observed at the ith m/z
value. Similar spectra will inherently cluster in spectral-space. The assumption made by Q5 is
that in spectral-space, healthy spectra form one cluster while disease spectra form a second, non-
overlapping cluster (Figure 1). The hypothesis for classification is that any healthy spectrum lies
closer to the healthy cluster than to the disease cluster (and vice-versa). Unclassified spectra can
then be classified by assigning them to their nearest cluster. The confidence in each classification
is thus a function of the distance of a sample to each cluster mean. In this representation it is
reasonable to define an optimal linear discriminant using the hyperplane that maximizes the across-
class variance while minimizing the within-class variance. Q5 computes, exactly, the hyperplane
that satisfies this criterion.

Q5’s ability to classify complex fragment mixtures was evaluated by testing its ability to dis-
criminate the mass spectra of healthy vs. disease human serum samples. The two disease states
examined in testing were ovarian and prostate cancer. Existing screening methods for both cancers
carry a low positive predictive value (PPV) [18, 8]. When detected early, the 5-year survival rate in-
creases for both cancers [30]. Improved screening techniques would be welcomed by the biomedical
community.

1.1 Previous Work

An MSCA accepts as input a set of MS training spectra, together with their correct classifications. It
outputs a classifier (discriminant) capable of classifying new mass spectra into one of the classes.
These new spectra (called test spectra) have not been seen by the algorithm before and their
classifications are unknown to the algorithm; the goal of the MSCA is to determine the correct
classification based on the classifier constructed from the training set. Classification verification is
the testing process by which the discriminant is evaluated for its ability to correctly classify test
samples. MSCAs can be classified by the type of MS data processed, type of algorithm employed,
and method of classification verification used. In the remainder of this section, we first describe
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a framework in which MSCAs can be compared. We then review previous work utilizing this
framework. Finally we summarize the key differences between previous work and Q5.
Completeness of mass spectrum. Analysis may be performed on either complete or partial
mass spectra. Complete mass spectra consist of the relative intensities of all m/z values acquired
during MS data collection. This includes the relative intensities observed for all m/z values from 0
up to the upper limit of detection. An MSCA that processes complete mass spectra works with the
entire recorded spectra: no values are “manually” excluded through preprocessing. When portions
of a spectrum are excluded from consideration, we say a partial spectrum is generated.
Manual preprocessing. Frequently, spectra are manually preprocessed. In manual preprocess-
ing, parts of the spectrum may be eliminated from consideration based on the magnitude of the
relative intensity or prior (human) knowledge. This spectral manipulation produces a manually-
processed partial spectrum. Modification of the peak intensities in a manner that imparts additional
information represents another type of manual manipulation.
Sample source (the biological source of the MS sample). Spectra may be obtained from either
simple or complex fragment mixtures. Simple mixtures may contain one or only a small number of
proteins and usually yield relatively “clean” spectra with fewer peaks. Complex fragment mixtures
contain between tens to thousands of biological fragments and produce a commensurate number
of m/z peaks. These peaks often present a challenge to MS analysis algorithms: a particular m/z
peak may be the sum of many sub-peaks (contributions) from many different molecular fragments.
Human serum (used in our application) is, for example, a complex fragment mixture.
Heuristic vs. Exact Classification Algorithms. Heuristic classification algorithms include
approaches such as genetic algorithms, neural networks, and simulated annealing. These algorithms
generally require multiple iterations to converge to a classifier; furthermore, the solution found by
heuristic algorithms is not guaranteed to be optimal. In addition, many heuristic approaches are
non-deterministic. Even when run on the same training set, the same non-deterministic algorithm
often converges to a different discriminant. In contrast, MSCAs that utilize closed-form exact
solutions (CFES) compute an exact solution using closed-form equations. CFES algorithms are
computationally efficient; they are non-iterative and deterministic (i.e., always compute the same
solution). Linear Discriminant Analysis (LDA), and thus Q5, are CFES algorithms.
Classification Verification. Classification algorithms must be verified, to confirm that the dis-
criminant will properly classify samples that were not used in training. To test a classification
algorithm, it is essential to perform multiple leave-out experiments, each with a different split be-
tween the training and testing (masked) sets. Often, there exists a split of samples into training
and testing sets that performs significantly better than others. The performance statistics of the
classifier against multiple different splits must therefore be reported. When only one or a small
number of splits are tested, classification verification is said to be partial.

The use of a testing set also allows one to confirm that the discriminant has not been over-fit
to the training data. If the discriminant has been overfit to the training spectra then one would
expect excellent performance in the classification of the training spectra but poor performance in
the classification of the testing spectra.

We now describe specific examples of existing MSCAs in previous research. Each example is
discussed using the framework introduced above. We then describe Q5’s advantages over previous
techniques.
Heuristic Classification Techniques. Petricoin et al. give a heuristic MSCA on complete com-
plex spectra with classification verification [28]. The method employs a genetic algorithm to select
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between 5 and 20 m/z peaks for use in classification. This MSCA was applied to SELDI†-TOF
spectra of blood serum from 100 women with ovarian cancer, 100 women without cancer, and 17
women with benign gynecological disease. A genetic algorithm was trained on a set of spectra
containing half of the cancer spectra and half of the normal spectra. The remaining 117 spectra
were used in testing. A single training/testing split was performed; a sensitivity of 100%, specificity
of 95%, and PPV of 94% was reported. Petricoin and co-workers have recently tested their MSCA
against two additional sets of ovarian cancer and one set of prostate cancer SELDI mass spectra [2].

Adam et al. developed a decision tree based heuristic MSCA on partial complex spectra with
partial classification verification for the diagnosis of prostate cancer [3]. A training set containing
85% of the total samples (n=326) was used to build the decision tree. The MSCA started with a
subset of 124 MS peaks and built a three-class decision tree using 9 of these. Partial testing using
a single training/testing split resulted in a sensitivity of 83%, specificity of 97%, and PPV of 96%.

Another heuristic MSCA based on discriminant factorial analysis has been used to discriminate
between betamethasone and dexamethasone [4]. Discriminant factorial analysis is an iterative
technique that attempts to converge to the answer directly computed by LDA. Additionally, while
not truly MSCAs, a number of papers have reported on heuristic techniques for the identification
of differentially expressed m/z peaks. Artificial neural networks have been used to identify m/z
peaks associated with astrocytoma [7] as well as bacteria involved in urinary tract infections [14].
Exact Classification Algorithms. Two recent works applied LDA to MS analysis. Miketova et
al. performed LDA on a subset of peaks to differentiate Gram positive vs. Gram negative bacte-
ria [24]. They present an exact algorithm on manually-processed partial complex spectra without
classification verification. Their analysis used reduced dimensionality electron ionization mass spec-
tra containing the relative intensities of 36 hand-picked m/z values. These 36 values surrounded
12 low-resolution mass peaks that had been shown in previous work to have discriminating power.
The linear discriminant was computed on a training set of 36 sample spectra (18 Gram positive
and 18 Gram negative). Although the computed discriminant was able to separate the training
samples, its ability to classify novel samples was not evaluated.

Wagner et al. present an exact algorithm on manually-processed partial simple spectra with
classification verification [32]. They performed TOF-SIMS (Time-of-Flight Secondary Ion MS) on
a small number of proteins (12) each prepared as a single protein adsorbed film using one of two
substrates. Replicate experiments were performed which generated spectra covering only the single
amino-acid mass range of 0-200 m/z. Analysis was performed using two sets of peaks: the first set
consisted of a preselected peak list while the second set contained all peaks with an intensity at
least three times greater than the 0-200 m/z background region. They compared the discriminating
power of principal components analysis (PCA), discriminant principal component analysis (DPCA),
and LDA. Leave-one-out experiments were performed on multiple training/testing splits. The
linear discriminant was used to predict the identity of an unknown single protein adsorbed film
from its mass spectrum. Among their results, they showed that LDA and DPCA provide better
discriminating power than PCA.

Goodacre et al. performed LDA on the Electrospray Ionization (ESI) mass spectra collected
from 3 replicates of 6 different bacteria [13]. Partial spectra from 100-3050 m/z were used in
analysis and no classification verification was performed. That is, no test spectra were classified
using the computed discriminant.

†Surface-Enhanced Laser Desorption/Ionization (SELDI) [17, 23] is a variant of the commonly used Matrix-
Assisted Laser Desorption/Ionization (MALDI) [20] Mass Spectrometry. In SELDI MS, molecular samples are placed
onto protein chips with selective affinity before ionization. Nonbinding molecules are washed off the chip and remaining
molecules are ionized by laser bombardment. Ions are subsequently processed by a mass analyzer.
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In summary, of the existing MSCAs, those that use complete complex spectra [28, 3], do not use
exact algorithms. Conversely, those MSCAs that are exact, do not operate on complete complex
spectra [24, 32]. Moreover, only partial classification verification results have been reported for
essentially all existing MSCAs. In these respects, Q5 differs from all previous MSCAs. Whereas
Petricoin et al. and Adam et al. used heuristic methods, Q5 uses LDA, an exact method. In
contrast to the work of Miketova et al. and Wagner et al., we do not remove from consideration
parts of the recorded mass spectrum based on relative-intensity or a priori (human) knowledge.
Our work utilizes affinity chip filtered human serum containing tens to thousands of proteins and
protein fragments. Q5 uses complete mass spectra, sampled at 15154 (resp. 16382) m/z values over
the range 0-20000 (resp. 0-22500), to compute a discriminant for ovarian (resp. prostate) cancer
datasets. Whereas Wagner et al. classified unknown spectra by assigning them to the nearest class,
we employ a novel probabilistic classification framework. For each unclassified testing spectrum,
Q5 computes both the most likely class assignment as well as the probability that the unknown
spectrum belongs to the specified class. Whereas only partial classification verification has been
reported on existing MSCAs, Q5 is tested with several thousand training/testing splits. Q5 is, to
our knowledge, the first closed-form exact solution to the problem of probabilistically classifying
complete mass-spectra of a complex protein mixture. Finally, Q5 employs a discriminant back-
projection algorithm to compute clues as to the molecular identities of differentially-expressed
proteins and peptides.

2 Methods

We have designed and implemented Q5 to classify complex samples from mass spectrometry data.
The major steps of Q5 are illustrated in Figure 1. In our algorithm, each spectrum is represented
by a point in spectral-space, as described above. The set of all spectral points in spectral-space is
dimensionality-reduced using Principal Components Analysis (PCA) [10]. In particular, PCA per-
forms a transformation of spectral-space into a lower dimensional space with little or no information
loss. A hyperplane, H, is then computed using Linear Discriminant Analysis (LDA) [11, 10]. The
PCA dimensionality reduced sample points are projected onto H. The hyperplane H maximizes the
across-class variance while minimizing the within-class variance of the projected sample points [11].
Thus, the LDA-computed hyperplane H satisfies our exactness criterion. As a result, classification
is made easier in this projected space. Now suppose we wish to classify some new (test) spectra
(that were not used in training). A test spectrum is first dimensionality-reduced by projecting onto
the retained principal components. Next, it is projected onto the hyperplane H. Finally, if the
classification confidence is above a threshold then the point is classified into the healthy or disease
state. The confidence in classification is based on a symmetric Gaussian distribution centered at
each class mean. The process of classifying two test spectra, represented by � and 4, is illustrated
in Figure 1.

The three spaces used by Q5 are spectral-space, PCA-space, and discriminant-space. Spectral-
space has been described above. PCA-space is the space spanned by the principal components
retained from the PCA dimensionality reduction; discriminant-space H is the space spanned by
the linear discriminant(s) computed from LDA. Discriminant-space has lower dimensionality than
PCA-space which has lower dimensionality than spectral-space.

6



2.1 Principal Components Analysis

Principal component analysis (PCA) is often used in the analysis of points that are embedded in
a high-dimensional space. PCA is a method for determining orthogonal axes of maximal variance
from a dataset [10]. PCA is an unsupervised technique: the classification of each sample point
is not considered in analysis. Sample points are zero-meaned and an eigendecomposition of the
covariance matrix computed. The eigenvector associated with the ith largest eigenvalue lies along
the ith principal component. Typically most sample point variance is captured by the first few
principal components, (i.e., those with the largest eigenvalues). Projecting a dataset onto these
largest principal components reduces sample dimensionality while maximally preserving variance.
Two disjoint sets of points and the first PCA computed principal component (solid line) are shown
in Figure 6A. PCA is used by Q5 for dimensionality reduction: it is not, and should not, be used to
compute a linear separator directly. For example, the projection of the sample points from Figure
6A onto the first principal component are overlapping (Figure 6B) and are not classifiable. PCA
is only used in Q5 to reduce the dimensionality of the sample points (with little or no information
loss), as is required by LDA. See appendix A for details.

2.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [11, 10] of a system with k classes in d dimensions computes, in
closed-form, k−1 orthogonal vectors, each of dimension d, which specify a hyperplane of dimension
k − 1. Projection of the sample points onto this hyperplane maximizes the between-class scatter
and minimizes the within-class scatter (Figure 6C). For the purposes of sample classification, such
a projection is clearly desirable, because it simultaneously reduces the dimensionality of the data
and preserves the ability to discriminate one class from another. Whereas other discriminant-
based approaches (i.e. Discriminant Factorial Analysis (DFA)) attempt to converge to the optimal
separator through multiple iterations [4], LDA computes the optimal discriminant directly in closed-
form.‡ LDA is a supervised technique: the class membership of each sample is utilized in computing
the discriminant. See appendix B for details.

2.3 Back-Projection

The LDA-computed linear discriminant can be back-projected from a PCA-space discriminant into
a spectral-space discriminant. A spectral-space discriminant allows one to determine the m/z
values of peaks used to differentiate between members of the two classes. This information is in
principle useful in determining the molecular identities of differently-expressed biomolecules. The
spectral-space linear discriminant, e•, can be computed from the PCA-space linear discriminant,
e, by left-multiplying by the transpose of the principle component matrix, V (Eq. 8):

e• = VTe. (1)

To determine which m/z values of the discriminant contribute most to classification, the spectral-
space discriminant should be normalized by the average intensity of the zero-meaned spectra. Thus

‡A natural extension to the use of LDA is the use of Support Vector Machines (SVM) [31, 21, 33]. To this end, we
replaced the LDA classifier with a non-linear SVM using a Gaussian kernel. Classification accuracy with the SVM
was as good or slightly worse than the LDA. This suggests that, in our examples, the healthy/disease spectra are
reasonably well-separated by a hyperplane, so that the benefits of a non-linear classifier will be, at best, minimal.
Additionally, we note that back-projection to determine molecular identity (Sec. 2.3) is not straight-forward with
SVMs.
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an r-dimensional significance vector s can be computed, with components

si =
∣∣e•i (

ȳi − µ′
i

)∣∣ (i = 1, . . . , r) (2)

where ȳ is the average cancer spectrum, µ′ is the all-class mean (Eq. 3), and r is the dimensionality
of spectral-space. Each si thus represents the significance of the ith m/z value of the mass spectrum
for classification.

2.4 Probabilistic Classification

In the simplest case, a novel sample is classified into the class with the closest class mean. However,
if the sample spectrum’s projection into discriminant space is nearly equidistant to two or more
class means then the confidence of classification should be reduced. Thus, a classifier should report
not only the classification of a given sample but also the confidence in that classification. A
probabilistic framework for reporting classification likelihoods was therefore implemented in Q5.
The classification probability of each spectrum is computed from the distance in discriminant-space
between the spectrum and the nearest class mean. See appendix C for details.

2.5 Q5 Testing

The testing of Q5 against each dataset consists of D-experiments and D-runs. In the first step of a
D-experiment (Figure 2), the set of all n sample spectra is randomly partitioned into a training set
T and a testing (masked) set M . Following this partition, Q5 performs PCA on the spectral points
in set T . The result of PCA is that each spectrum is now a point in the (n− 3)-dimensional PCA-
space. The optimal separating hyperplane is next computed using LDA on the PCA dimensionality-
reduced training spectra. The discriminant-space sample points from each class should be inherently
clustered. The center of each cluster is then computed and used in probabilistic classification. A
spectrum with a probability of classification less than a fixed threshold is not classified by Q5. A
collection of s D-experiments is called a D-run. For each of the four datasets, four D-runs are
performed with training sets consisting of 50%, 75%, 85%, and 95% of the total samples. For
example, the 75% D-Run consists of s D-experiments; in each D-experiment a different random
75% of the total samples is assigned to the training set and the remaining 25% is assigned to the
testing set. To illustrate the robustness of Q5, s = 1000 D-experiments were performed in each
D-run. For each D-experiment the percent-classified, percent-correctly classified, positive predictive
value, sensitivity, and specificity were computed using probability classification thresholds evenly
sampled between 0.5 and 1.0. The mean and standard deviation of these values are computed for
each D-run.

2.6 Algorithmic Complexity

Let n be the number of training spectra, m be the number of testing spectra, r be the resolution of
each mass spectrum, and k be the number of classes. PCA requires computing the top n eigenvectors
of the covariance matrix C built from the training spectra (Eq. 5). The eigenvectors of C can be
computed efficiently using the n×n Gram matrix (Eq. 6). The Gram matrix C′ can be constructed
in O(n2r) time and its eigenvectors computed in O(n3) time. Computing the eigenvectors of C from
the eigenvectors of C′ then requires O(n2r) time. Projection of the training spectra onto the PCA
basis requires O(n2r) time. Computing the LDA discriminant entails computing the generalized
eigenvectors of the (n− 3)× (n− 3) within- and between-class scatter matrices (Eqs. 10 and 11).
This can be done in time O(n3). Projection onto the discriminant requires O(kn) time. Finally,
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since each spectrum can appear in at most one cluster, computing the class means requires O(n)
amortized time. Therefore training can be accomplished in time O(n3 + n2r). The testing of m
sample spectra can be performed in O(mrn + mnk + mk2) time: The all-class training mean can
be subtracted in O(r) time. Projection onto the PCA basis is O(rn) time; projection onto the
LDA discriminant is O(nk) time. The nearest cluster mean is computed in time O(k2) and the
classification probability computed in time O(1). In our studies, k ≤ 3 and r ≥ 15154. Since we
expect k � r, if we assume k = O(1), the testing of one spectrum can be performed in time O(rn)
and m spectra can be classified in time O(mrn). The PCA and LDA computations on the training
set require 1.0 to 1.5 minutes of runtime on a Pentium 4 class workstation. Classification of a novel
sample can be performed in under a second.

2.7 Implementation

Datasets were obtained from the NIH and FDA Clinical Proteomics Program Databank [2] and
the Eastern Virginia Medical School [1]. Each spectrum in these datasets is contained in either an
individual or a grouped file and is separated into either a healthy or a disease subdirectory. These
datafiles are in either comma-delimited or Microsoft Excel format. Datafile reading, PCA, LDA,
and probabilistic classification are implemented in matlab (Mathworks Inc, Natick, MA).

Each D-run is processed separately by Q5: the specified dataset is loaded and 1000 D-experiments
are performed each with a random training/testing split. For each D-experiment, the training sam-
ple mean and discriminant-space projections of both the training and testing spectra are computed
and saved. Subsequently, Q5 computes the PPV, sensitivity, specificity, percent correct, and percent
classified for each D-experiment. These statistics are a function of the threshold used in probabilis-
tic classification. Statistics were therefore computed for probability classification thresholds evenly
spaced between 0.5 and 1.0 (see Figures 3 and 4).

3 Results and Discussion

Q5 was applied to classify three ovarian cancer and one prostate cancer dataset. In this section
we report on the performance of the Q5 algorithm and compare these results, where possible, to
previous MSCAs.

All datasets are complete complex spectra from SELDI-TOF MS experiments. Datasets were
provided by Dr. Emanuel Petricoin III and Dr. George Wright Jr. The Petricoin group MS spectra
were obtained from the NIH and FDA Clinical Proteomics Program Databank [2]. The Wright
group MS spectra were obtained from the Eastern Virginia Medical School - Virginia Prostate
Center [1]. We named each dataset by the cancer type screened (Ovarian Cancer (OC) or Prostate
Cancer (PC)) and the SELDI affinity chip used in MS (H4 (Hydrophobic), WCX2 (Weak Cation
Exchange - negative), or IMAC-Cu (Immobilized Metal Affinity Capture - coated with CuSO4)).
The healthy samples in the ovarian cancer datasets come from women at risk for ovarian cancer (the
demographic most likely to use and benefit from serum screening) while the ovarian cancer positive
samples come from women with tumors spanning all major epithelial subtypes and stages of disease.
The samples from both OC-H4 and OC-WCX2a were manually prepared; the OC-WCX2b samples
were prepared by a robotic instrument. Serum samples in the prostate cancer dataset [3] were
collected and processed manually from men with normal prostates, benign prostatic hypertrophy,
and all four stages of prostate cancer. The IMAC-3 affinity chip was coated with CuSO4 and used
in the SELDI MS experiment. All SELDI chips are produced by Ciphergen Biosystems (Freemont,
CA, USA). The baseline was subtracted by the labs preparing the datasets OC-H4, OC-WCX2a, and
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PC-IMAC-Cu ; this results in some m/z peaks having negative relative intensities. The Petricoin
group normalized the relative intensities of each sample in dataset OC-WCX2b to lie between 0
and 100. We performed no additional preprocessing on these datasets. The datasets are sampled at
15154 (resp. 16382) m/z values over the range 0-20000 (resp. 0-22500). All m/z points and relative
intensities in the collected spectra are used in Q5 spectral analysis; none are discarded. Further
details of the datasets are given in Table 1 and have been described previously [28, 2, 3].

The initial dimensionality of spectral-space (15154 for the ovarian cancer spectra [2], 16382
for the prostate cancer spectra [1]) is typically larger than the intrinsic dimensionality of the
training set. Although the complete training spectra exist in 15154- or 16382-dimensional space,
the intrinsic dimensionality of these points is bounded by the number of training samples. LDA
can not be performed on a set of points in a space with dimensionality larger than the set’s
intrinsic dimensionality. That is, in order to guarantee a non-degenerate solution for LDA, the
dimensionality of the data must be reduced to at most n−k where n is the number of samples and
k is the number of classes [11]. Therefore, since the intrinsic dimensionality of the training samples
is no more than 95% of the total number of samples (327 in the largest dataset) we must project
the spectra into a lower dimensional space. For this reason, PCA is performed on each training
set. We use the n−3 largest principal components in dimensionality reduction since both two- and
three- class LDA experiments are performed.

We now describe the results of running Q5 on the four datasets [28, 2, 3]. Q5 achieves per-
formance results that compare favorably to previous work. For all datasets, a number of the
training/testing splits result in 100% classification accuracy.

Ovarian Cancer. Q5 was applied to the three ovarian cancer datasets (OC-H4, OC-WCX2a,
and OC-WCX2b) [2, 28]. The results of this analysis are given in Table 2 and Figure 3. For each
dataset, a D-run was performed with training sets consisting of 50%, 75%, 85%, and 95% of the
total number of sample spectra. Thus a total of 12,000 D-experiments were performed across these
12 D-runs. As one increases the probability classification threshold the percent-classified decreases.
At the same time, increasing the threshold increases the percent-correctly classified, sensitivity,
specificity, and positive predictive value. Thus a higher threshold allows for increased classification
accuracy at the cost of a decreased number of samples classified. A classification threshold exists
that allows Q5 to classify 90.0% of the OC-H4 samples with a PPV of 97.4%, a sensitivity of 97.5%,
and a specificity of 96.8%. Q5 achieves better performance statistics on the WCX datasets. Q5
can classify 93.4% of the OC-WCX2a samples with a PPV of 99.2%, a sensitivity of 98.8%, and a
specificity of 98.9%. Q5’s best performance is achieved on the OC-WCX2b dataset, classification
is perfect in all 3000 D-experiments beyond the 50% training level. That is 100% of the samples
are classified with a PPV of 100%, a sensitivity of 100%, and a specificity of 100%. It is worth
noting that for each dataset tested there exists a probability classification threshold which achieves
perfect classification in a majority of the D-experiments. The variance in classification performance
illustrates the importance of reporting MSCA results on multiple different train/test splits.

Prostate Cancer. Q5 was then tested against the PC-IMAC-Cu prostate cancer dataset [3].
Q5 was used to compute both a two- and three- class discriminant. Each sample in the PC-IMAC-
Cu dataset is classified as either Normal Healthy (NH), Benign Prostatic Hypertrophy (BPH),
or Prostate Cancer (PC). For the two-class discriminant tests, both NH and BPH samples were
considered ‘healthy’ while PC samples were considered ‘disease’. The two-class discriminant tests
consist of 4 D-runs, performed with training sets containing 50%, 75%, 85%, and 95% of the total
number of sample spectra. As in the ovarian cancer tests, each D-run of the prostate cancer
tests consisted of 1000 D-experiments. The percent-classified, percent-correctly classified, positive
predictive value, sensitivity, and specificity are reported in Table 3 and Figures 4A and 4B. One set
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of three-class experiments were performed. In the three-class experiment each sample was classified
as either NH, BD, or PC, Table 4. Similar to the other datasets, 4 D-runs were performed with
training sets containing 50%, 75%, 85%, and 95% of the total number of sample spectra. The results
of the three-class experiments are shown in Table 4 and Figures 4C and 4D. As was the case with
the ovarian cancer classification, the prostate cancer classification showed a tradeoff between the
accuracy and the percent of samples classified. In the 2-class experiments Q5 was able to classify
85.6% of the PC-IMAC-Cu samples with a PPV of 94.3%, a sensitivity of 91.3%, and a specificity
of 93.0%. In the 3-class experiments Q5 classified 92.0% of the samples with a positive predictive
value of 96.1%, a sensitivity of 93.2%, and a specificity of 96.1%. If we allow only 67.1% of samples
to be classified Q5 achieves a PPV of 99.2%, a sensitivity of 98.1%, and a specificity of 99.3%.
Table 5 shows three-way classification results.

For comparison, we forced Q5 to classify 100% of the training spectra. In this experiment
each spectrum was classified into the class with the nearest class mean. The results of classifying
100% of the samples for each training percent are shown in the top row of each training percent
in Tables 3 and 4. This ‘complete’ classification achieves an accuracy approximately equal to that
obtained using a 0.5 probability classification threshold. We note that these accuracies are not as
high as those achieved when a larger probability classification threshold is used. This illustrates
that increased predictive accuracy can be achieved by not classifying ‘ambiguous’ spectra.

To verify that the discriminant computed by Q5 is not overly sensitive to outliers, we retrained
the classifier for the ovarian cancer dataset OC-H4 using 75% of the data for training and misclas-
sified 5% of this data in the training stage. With a probability classification threshold of 0.5, we are
able to classify 97.80% of the testing data: 87.74% is correctly classified, with a PPV of 88.60%,
a sensitivity of 86.82%, and a specificity of 88.65%. This compares reasonably well to the result
with perfectly classified training data for the same dataset, where we are able to classify 98.60% of
the testing data: 92.20% is correctly classified, with a PPV of 92.13%, a sensitivity of 92.45%, and
a specificity of 91.95% (see Table 2). We conclude that a small number of misclassified training
samples has only a small effect on overall performance. One reason for this is that LDA relies on
the variance of the projected data, and for a significantly large enough training set, a small number
of outliers will not have a particularly adverse effect.

The consistency of the computed discriminants for each dataset was examined. Each discrimi-
nant is back-projected (Sec. 2.3) from PCA-space into spectral-space. The dot-product between all
pairs of discriminants was computed. The normalized discriminants for each experiment fall within
a small region of the 15154- or 16382-dimension unit-hypersphere (results not shown). This repre-
sents an advantage of Q5 over non-deterministic methods in that the Q5 computed discriminants
are similar for all D-experiments.
Comparison of Results to Other MSCAs

Petricoin et al. [28] report classification statistics for only one training/testing split of the OC-
H4 dataset; no performance statistics have been published for the OC-WCX2a and OC-WCX2b
datasets. This makes a comprehensive comparison of Q5 to previous work difficult. The reported
performance of the Petricoin group MSCA (on the OC-H4 dataset) lies within one standard devi-
ation of the mean performance statistics of Q5. Q5 classification results on the OC-WCX2a and
OC-WCX2b datasets were near perfect. There are, however, no published performance results of
MSCAs on these datasets to which the Q5 results can be directly compared.

Q5’s prostate cancer classification results can be compared to those of Adam et al. [3], who
performed a single testing/training split and achieved a sensitivity of 83%, specificity of 97%, and
PPV of 96%. Q5 achieved a higher sensitivity and a similar specificity and PPV (Tables 3 and 4).
Additionally in a 3-way experiment, the decision tree of Adam et al. reports 100% of the normal
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healthy samples as normal, 93% of the BPH samples as BPH, and 83% of the PC samples as
PC. Q5’s 3-way classification results are better: Q5 detects a higher percentage of prostate cancer
samples among those it is able to classify (Table 5). Hence Q5 outperformed the decision-tree based
prostate cancer MSCA [3].

For the datasets tested, Q5 is able to determine that spectral differences do indeed exist between
the healthy and disease states. These spectral differences are a function of molecular differences
existing between the two sets of samples. Q5’s LDA-computed discriminant provides the m/z values
of peaks differentially present between the two states. Thus Q5 is able to provide full answers to
questions I) and IIa) posed in the introduction (Sec. 1). In summary, we found that Q5 classification
performed at or above the level of existing MSCAs. It is worth noting that all existing MSCAs
reviewed here, including Q5, outperform the currently used clinical CA125 and PSA tests. The
future for MSCAs in analyzing human blood serum appears promising.
Back-Projection

All MSCAs assume that some m/z peaks are differentially observed between the healthy and
disease classes. Identification of m/z peaks with large class-specific relative intensity differences
can, in principle, allow for the identification of biomolecules affected by the disease process. Most
heuristic MSCAs base classification on a small number of m/z peaks. For example, Petricoin et
al. [28] use 5-20 m/z peaks and Adam et al. [3] use 9 m/z peaks. Thus information on class-specific
relative intensity differences for most m/z peaks is not available. An advantage of LDA is that
the spectral-space discriminant can be used to compute a classification significance for all m/z
values (Sec. 2.3, Eq. 2). Below, we show how to query a protein database using the discriminant
peaks. The discriminant can also serve as supporting evidence for biomarkers discovered via other
experimental techniques: the SELDI mass spectrum of a hypothesized serum biomarker can be
checked for consistency with a discriminant.

To test the power of the back-projected discriminant for determining the identities of differently-
expressed proteins and peptides, we took the largest m/z peaks from the normalized discriminant
(the significance vector), interpreted them as masses, and looked up those masses in two protein
databases (Table 6). While the lookup is likely to yield some false positives due to mass-aliasing,
the database lookup for the ovarian (resp. prostate) queries found 27 (resp. 39) proteins and pep-
tide fragments that have been implicated in other human cancers, are growth factors, or are known
serum or plasma proteins. While some of the SwissProt and TrEMBL entries are annotated with
known or hypothesized function, many of the entries (particularly in the TrEMBL database) are of
unknown function [6]. While these ‘lead’ proteins have masses consistent with the most significant
discriminant peaks, we caution that the database lookup does not prove that these proteins are
present in the serum. These ‘lead’ proteins can serve as the starting point for previously-described
biomarker identification protocols. Perhaps the most interesting protein identified among those
with known function for the OC-WCX2b query is TrEMBL entry§ Q9BZK8, a 76AA protein
of OCR1 (ovarian cancer-related protein 1). Other interesting results include: Q9NPJ2, a 36AA
protein fragment of P53/TP52 (cellular tumor antigen); Q9NP09, a 36AA protein fragment of
ERBB2 (polymorphism of the HER-2/neu oncogene); Q13262, a 44AA estrogen receptor fragment;
Q9UH52/Q96B49, a 74AA protein fragment of OBTP (over-expressed in some breast tumors); and
SwissProt entry PS2 HUMAN, an 84AA protein from TFF1/BCEI/PS2 (a breast cancer associ-
ated estrogen-inducible protein). The PC-IMAC-Cu search identified two known prostate cancer
associated proteins: TrEMBL entry Q9GZR0, a 50AA protein fragment of SCN8A (voltage-gated
sodium channel involved with metastatic human prostate cancer) and Q96P91, a 55AA protein
fragment of PON1 (paraoxonase 1, associated with prostate cancer risk). Additional interesting

§In this section, TrEMBL entries begin with ’Q’ and have six characters.
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results include: Q9NPJ2, a 36AA protein fragment of P53/TP52 (cellular tumor antigen) and
Q12847, a 45AA protein fragment of TAP1 (tumor associated protein). Approximately 90 of the
genes found in the ovarian cancer search and 70 of the genes found in the prostate cancer search
have novel or unknown function. This raises the possibility that these genes may have a role or
additional roles in ovarian or prostate cancer. The normalized discriminants are shown in Figure
5; the m/z peaks consistent with the masses of the described proteins are indicated.

Other methods for protein identification via mass spectrometry have been developed. Three
main alternative techniques exist. In the first, the mass spectrum of a proteolytic digest determines
a set of protein fragment masses that can be matched to a database [19]. In the second approach, a
peptide’s sequence is directly identified by tandem mass spectrometry (MS/MS) [9, 29]. In a third
approach, tandem mass spectrometry may be applied to a proteolytic digest of the target proteins
after these fragments have been separated via chromatography (e.g., liquid chromatography (LC)
MS) [22, 27]. In the last two approaches, one may use a database for sequence identification, or
the peptide sequencing may be done de novo. Currently available whole-serum clinical cancer MS
data is neither from a controlled proteolytic digest, nor from tandem mass spectrometry. Hence,
we used a different approach to help identify the molecules most important in discrimination. It
would be interesting, in future work, to extend Q5 to take advantage of the additional information
experimentally available from controlled proteolytic digests or MS/MS.

Our work represents the first attempt to compute the molecular identities of the differentially-
expressed proteins in datasets OC-WCX2b and PC-IMAC-Cu. Further investigation of our lead
proteins and peptide fragments may enhance our understanding of the molecular basis of oncogenisis
and could potentially lead to new therapeutic targets.

4 Conclusion

Mass spectrometry will soon play an important role in both the research lab and hospital clinic.
For all but the simplest cases, manual analysis of complete complex spectra is impractical. This
observation led to the development of a variety of MSCAs. Of the previous MSCAs, those that
use complete complex spectra [28, 3], do not use exact algorithms. Conversely, those MSCAs that
are exact [24, 32], do not operate on complete complex spectra. In contrast to previous work, Q5
uses PCA and LDA followed by probabilistic classification on complete complex SELDI-TOF mass
spectra for the classification of healthy vs. disease serum samples. The use of a probabilistic classi-
fication framework increases the predictive accuracy of Q5. A tradeoff is shown between confidence
in classification and the number of samples classified. Our solution is computationally efficient; it
is non-iterative and computes the optimal linear discriminant using closed-form equations. Q5 thus
represents a generally applicable technique. Although Q5 was tested against ovarian and prostate
cancer it is reasonable to hypothesize that Q5 may be effective in the screening of other cancers and
diseases. Q5 was tested against 2 cancer types and 4 datasets. Our results show that a classification
threshold can be chosen for Q5 such that over 90% of the samples are classified with a sensitivity,
specificity, and PPV near 100%. Q5 performed at or above the level of previous techniques while
conferring all advantages of a closed-form exact solution. The consistently high level of performance
on the testing spectra demonstrates that Q5 was not over-fit to the training spectra. We note that
Q5’s time complexity grows only linearly with the resolution of the mass spectra. Thus Q5 will
scale well as higher-resolution spectra are collected.

Another advantage of Q5 is that the discriminant can be examined both to identify and to
support the validity of novel biomarkers. Whereas previous complete complex spectra MSCAs
discriminate using a small fraction of the total number of m/z peaks, Q5 computes all peaks that
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are differentially-expressed in one class vs. the other. We showed how Q5’s discriminant back-
projection technique can compute clues as to the molecular identities of differentially-expressed
proteins and peptides.

Finally, we note that for MSCAs to be practical in a clinical setting, questions of reproducibility
must be addressed. Ideally, a discriminant computed from one spectrometer should generalize
to classify spectra collected on a different spectrometer, in a different laboratory. We have not
addressed such reproducibility questions, which will be important for future work.

5 Supporting Material

The matlab code for Q5 is available at http://www.cs.dartmouth.edu/~brd/Bio and by con-
tacting the authors. The software is distributed under the Gnu Public License [12].
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Appendix

A Principal Components Analysis

Each sample spectrum in the training set is represented as a column vector x (x ∈ X, |X| = nx)
(healthy) or y (y ∈ Y, |Y | = ny) (disease). Here | · | is the number of elements in the specified set.
Thus, nx (resp. ny) is the number of healthy (resp. disease) samples. Let n = nx + ny be the total
number of training samples; we assume all x and y vectors have dimensionality r (i.e., each mass
spectrum is sampled at r points). The all-class mean,

µ′ =
1
n

∑
x∈X

x +
∑
y∈Y

y

 , (3)

is computed and subtracted from each sample, producing sets of zero-meaned samples X ′ and Y ′.
The columns of the r × n matrix P consist of all zero-meaned samples,

P =
[
X ′ Y ′] . (4)

The r × r covariance matrix C can then be computed:

C = PPT . (5)

The principal components are the eigenvectors, vi, of the covariance matrix C. An eigendecomposi-
tion of C produces at most w = min(n, r) non-zero eigenvalues λi (i = 1, ..., w) with corresponding
normalized eigenvectors vi such that Cvi = λivi. Each eigenvalue λi is proportional to the variance
of the original data in the direction of the ith principal component. Frequently, the number (r) of
points in each sample spectrum greatly exceeds the number (n) of samples. In this case, an alter-
nate formulation of the covariance matrix may be preferable. When r > n, increased computational
efficiency can be achieved by computing the eigenvectors of the n× n Gram matrix C′,

C′ = PTP. (6)

The eigenvalues of C′ equal the eigenvalues of C, and the normalized eigenvectors of C′ (v′
i,

i = 1, ..., w) can be related to the normalized eigenvectors of C by

vi = Pv′
i. (7)

The largest principal components typically account for nearly all sample variance. Therefore,
dimensionality reduction with PCA can be accomplished by sorting components by eigenvalue and
then discarding the eigenvectors with the smallest corresponding eigenvalues. After discarding the
eigenvectors, the w′ eigenvectors that remain constitute the PCA basis. Once a set of principal
components is selected as a basis, sample points can be projected onto these axes,

xp = Vx′ (
x′ ∈ X ′) ,

yp = Vy′ (
y′ ∈ Y ′) , (8)

where the rows of matrix V are the retained eigenvectors vi (i = 1, ..., w′), and xp (resp. yp) are the
PCA-space projections of each healthy (resp. disease) sample onto the w′ principal components.
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B Linear Discriminant Analysis

For simplicity we present a two-class LDA. Two disjoint sets of points and the LDA-computed dis-
criminant (dotted line) are shown in Figure 6A. Projecting sample points onto the linear discrimi-
nant allows for point classification (Figure 6C). Higher-order LDAs can be employed to differentiate
more than two classes: the generalization to k classes (k > 2) is straightforward [10].

After PCA-based dimensionality reduction, let column vectors xp (xp ∈ Xp, |Xp| = nx) (healthy)
and yp (yp ∈ Yp, |Yp| = ny) (disease), of dimension w′, be the training sample spectra from each of
the two classes. The within-class means µx and µy are defined as:

µx =
1
nx

∑
xp∈Xp

xp, and µy =
1
ny

∑
yp∈Yp

yp. (9)

The all-class mean µ is computed from Xp and Yp similarly to Eq. (3). The within-class scatter
matrix Sw is defined as:

Sw = MxMT
x + MyMT

y , (10)

where the columns of matrix Mx contain the zero-meaned PCA-space representation of healthy
spectra xp − µx. Similarly, the columns of matrix My contain yp − µy. The between-class scatter
matrix is defined as:

Sb = nx(µx − µ)(µx − µ)T + ny(µy − µ)(µy − µ)T . (11)

A generalized eigenvector v, of Sb and Sw satisfies the equation Sbv = λSwv, (where λ is the
eigenvalue). Let e be the maximal generalized eigenvalue-eigenvector of Sb and Sw. The vector e
is the optimal linear discriminant. The matrices Sw and Sb have size w′ × w′ and rank of at most
n − k (k is the number of classes). Therefore w′ must be less than n − k to avoid a guaranteed
singularity in the eigendecomposition. This is the mathematical reason why sample points must be
dimensionality-reduced to dimension less than n− k before LDA is performed.

Once the linear discriminant is determined from the training set, the PCA-space vectors (xp,
yp) are projected onto the linear discriminant to produce the discriminant-space representation of
each spectrum (xd, yd). Note that for a two-class LDA, discriminant-space is one-dimensional, thus
xd is a scalar and is not typeset in boldface. Points in the discriminant-space of a k-class LDA
(k > 2) are vectors and are thus typeset in boldface. Hence,

xd = (xp)Te (xp ∈ Xp)
yd = (yp)Te (yp ∈ Yp) (12)

The points xd should form one cluster while the points yd should, ideally, form a separate non-
overlapping cluster. Healthy and disease class means can be then be computed and used for
classification. The spectral-space representation of a novel spectrum, z, from the testing set can
now be classified by computing zd, the projection of z into the subspace spanned by the linear
discriminant,

zd =
(
V

(
z− µ′))T e, (13)

where V is the eigenvector matrix defined in Eq. (8). In Eq. (13), the PCA projection of the zero-
meaned spectral-space representation z is projected onto the linear discriminant e. The spectrum
represented by z can then be classified based on proximity to the healthy and disease class means.
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C Probabilistic Classification

Two-Class Probability. After projection onto the linear discriminant, let p1 (resp. p2) be the
mean of class C1 (resp. class C2). Let zd be the discriminant-space projection (Eq. 13) of a novel
sample spectrum and let q be the midpoint between p1 and p2. Assume, without loss of generality,
that zd is closer to p1 than p2. That is, d(zd, p1) < d(zd, p2) where d(·, ·) is the Euclidean distance.
We define the probability that zd belongs to C1 as:

P (zd ∈ C1) = exp
[
− (d(zd, p1))

2 /σ2
]
, (14)

where σ (the standard deviation of the Gaussian probability function) is chosen such that P (q ∈
C1) = 0.5. Eq. (14) specifies a symmetric Gaussian probability density function centered at p1

where the midpoint between p1 and p2 has a 50% probability of being classified into either C1 or
C2.

The classification threshold t ∈ [0.5, 1.0] is chosen such that a classification is made if and only
if:

P (zd ∈ Ci) > t (i = 1, 2). (15)

If Eq. (15) is not satisfied then we consider zd to be ambiguous and a classification is not made. A
tradeoff is thus offered between the number of spectra classified and the accuracy of classification.
Smaller values of t allow more samples to be classified at the cost of lower confidence in classification.
Similarly, larger values of t classify fewer samples but with higher confidence.
k-Class Probability. In a k-class model (k > 2) we have classes Ci (i = 1, ..., k) and associated
class means pi, where pi is now a (k − 1)-dimensional vector. The variance computed for the
Gaussian probability density function of each class in the k-class model is not guaranteed to be
the same for each class. That is, a different σi (the standard deviation) is defined for each class.
Intuitively, the σi computed for class Ci in the k-class classifier is the smallest variance (σ) that
would be computed if one were to compute a 2-class classifier (as described above) between class
Ci and every other class Cj (j 6= i). To compute σi we first define a set of midpoints. Let qij be
the midpoint between pi and pj and let q′

i be the midpoint closest to pi,

q′
i = argmin

q∈Qi

d(pi,q), (16)

where Qi = {qij |j = 1, ..., k; j 6= i}. Using q′
i we can now compute the σi such that the midpoint

between two class means will have a probability of classification of 50%. σi satisfies the following
equation:

exp
[
−

(
d(pi,q′

i)
)2

/σ2
i

]
= 0.5. (17)

The probability that a discriminant-space point zd (where zd has dimension k− 1) belongs to class
Ci is:

P (zd ∈ Ci) = exp
[
− (d(zd,pi))

2 /σ2
i

]
. (18)

As in the 2-class probabilistic framework, a classification threshold t ∈ [0.5, 1.0] is specified such
that a classification is made if and only if there exists an i such that P (zd ∈ Ci) > t. If this criterion
is not satisfied we consider zd to be ambiguous, and a classification is not made. By construction, it
is not possible for a point to be classified into more than one class when the classification threshold
t is chosen in the range [0.5, 1.0]. Note that the variances and classification probabilities computed
for two classes using either the two-class model or the k-class model (with k = 2) are identical.
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Figure 1: Major Steps of the Q5 Algorithm. The steps involved in building a two-class classifier are
illustrated using simplified artificial spectra. On the left are training (×, ◦) and testing (�, 4) spectra.
Shown on the right, from top to bottom, are (1) the spectral space representation of each spectrum; (2)
PCA: the result of dimensionality reduction (for simplicity we show the projection onto just the top two
principle components); (3) LDA: the projection of each spectrum onto the discriminant surface H; and (4)
the probabilistic classification. In this example the testing spectrum denoted by � is classified as belonging
to the class denoted by ◦, while the spectrum denoted by 4 is unclassified.
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A

Num Samples
Data Set SELDI Chip Processing Healthy All Stages OC Stage I OC

OC-H41 H4 Manual 100 100 24
OC-WCX2a WCX2 Manual 100 100 -
OC-WCX2b WCX2 Robotic 91 162 28

B
Num Samples

Data Set SELDI Chip Processing Healthy Benign Hypertrophy Prostate Cancer

PC-IMAC-Cu IMAC-3 (Cu) Manual 81 78 168

Table 1: Details of (A) the three ovarian cancer datasets [28] and (B) the prostate cancer dataset [3] used
in the testing of Q5.
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Figure 2: One D-experiment. A complete complex spectral dataset is first partitioned into training
and testing sets. A PCA basis is then computed from the training spectra. These spectra are
projected (denoted by π) onto the PCA basis creating the PCA-space representation. The spectra
in this space are then projected onto the computed LDA discriminant. The class means and
Gaussian probability distribution standard deviation, σ are computed from this representation. In
the testing stage, the testing spectra are first projected onto the PCA basis, then onto the LDA
discriminant and then classified.
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Dataset T% PCT % Corr % Classif PPV Sens Spec

OC-H4 50% 0.50 88.86 (3.01) 98.04 (1.45) 89.92 (3.71) 87.57 (5.12) 90.15 (4.04)
0.63 92.46 (2.76) 85.46 (3.42) 93.25 (3.49) 91.36 (4.84) 93.49 (3.57)
0.75 95.00 (2.51) 72.22 (4.29) 95.59 (3.33) 94.08 (4.42) 95.82 (3.28)

75% 0.50 92.20 (3.62) 98.60 (1.55) 92.13 (4.71) 92.45 (5.51) 91.95 (5.15)
0.63 95.53 (3.03) 87.83 (4.28) 95.44 (4.21) 95.70 (4.48) 95.35 (4.44)
0.75 97.63 (2.34) 76.54 (5.41) 97.88 (3.22) 97.37 (3.62) 97.90 (3.20)

85% 0.50 92.70 (4.43) 98.82 (1.89) 92.23 (5.86) 93.58 (6.27) 91.82 (6.64)
0.63 96.15 (3.55) 88.61 (5.86) 96.16 (4.72) 96.33 (5.20) 95.95 (5.09)
0.75 98.11 (2.64) 77.18 (7.65) 98.67 (3.19) 97.58 (4.43) 98.62 (3.33)

95% 0.50 93.38 (7.34) 98.98 (3.09) 92.70 (10.00) 95.52 (8.98) 91.27 (12.43)
0.63 97.18 (5.31) 89.96 (9.22) 97.40 (6.69) 97.51 (7.25) 96.81 (8.24)
0.75 98.05 (4.72) 78.66 (12.79) 98.52 (5.45) 97.79 (7.57) 98.20 (6.73)

OC-WCX2a 50% 0.50 96.03 (1.87) 99.78 (0.48) 95.50 (2.97) 96.74 (2.36) 95.32 (3.25)
0.63 97.54 (1.55) 95.05 (2.10) 97.55 (2.25) 97.71 (2.08) 97.36 (2.51)
0.75 98.43 (1.36) 88.78 (3.06) 98.73 (1.74) 98.28 (1.96) 98.58 (2.01)

75% 0.50 97.16 (2.19) 99.92 (0.40) 97.10 (3.02) 97.34 (3.12) 96.99 (3.22)
0.63 98.07 (1.83) 97.09 (2.46) 98.30 (2.38) 97.96 (2.88) 98.19 (2.58)
0.75 98.86 (1.58) 92.41 (3.61) 99.22 (1.74) 98.61 (2.59) 99.13 (1.97)

85% 0.50 97.33 (2.85) 99.97 (0.30) 97.25 (3.83) 97.57 (4.01) 97.08 (4.16)
0.63 97.98 (2.40) 97.78 (2.92) 98.13 (3.18) 97.98 (3.69) 97.99 (3.45)
0.75 98.95 (1.94) 93.04 (4.74) 99.27 (2.12) 98.74 (3.19) 99.17 (2.39)

95% 0.50 97.48 (4.76) 99.99 (0.32) 97.35 (6.37) 98.14 (5.88) 96.82 (7.74)
0.63 97.85 (4.43) 98.34 (3.91) 97.92 (5.69) 98.23 (5.77) 97.46 (6.99)
0.75 98.90 (3.27) 93.41 (7.70) 99.23 (3.54) 98.79 (4.93) 98.98 (4.79)

OC-WCX2b 50% 0.50 99.99 (0.08) 100.00 (0.07) 100.00 (0.05) 99.99 (0.12) 100.00 (0.10)
0.63 100.00 (0.05) 99.93 (0.24) 100.00 (0.00) 100.00 (0.08) 100.00 (0.00)
0.75 100.00 (0.03) 99.49 (0.61) 100.00 (0.00) 100.00 (0.04) 100.00 (0.00)

75% 0.50 100.00 (0.00) 100.00 (0.05) 100.00 (0.00) 100.00 (0.00) 100.00 ( 0.00)
0.63 100.00 (0.00) 99.98 (0.19) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.75 100.00 (0.00) 99.67 (0.67) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

85% 0.50 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.63 100.00 (0.00) 99.98 (0.20) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.75 100.00 (0.00) 99.71 (0.82) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

95% 0.50 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.63 100.00 (0.00) 99.99 (0.23) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
0.75 100.00 (0.00) 99.67 (1.50) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

Table 2: Predictive results on all three ovarian cancer datasets. T%: Training Percent, PCT: Probability
Classification Threshold, % Corr: Percent Correctly Classified, % Classif: Percent Classified, PPV: Positive
Predictive Value, Sens: Sensitivity, Spec: Specificity. Values listed are means in percent, standard deviations
are in parentheses.
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Figure 3: The probability classification threshold vs. percent-classified (Classif), percent-correctly classified
(Correct), positive predictive value (PPV), sensitivity (Sens), and specificity (Spec) for six D-runs of Q5
on the ovarian cancer datasets. (A) OC-H4, 50% of samples used in training, (B) OC-H4, 95% of samples
used in training. (C) OC-WCX2a, 50% of samples used in training, (D) OC-WCX2a, 95% of samples used
in training. (E) OC-WCX2b, 50% of samples used in training, (F) OC-WCX2b, 95% of samples used in
training. Increased probability classification thresholds increase Q5’s percent-correctly classified, positive
predictive value, sensitivity, and specificity while decreasing the percent-classified. Performance on the
robotically prepared OC-WCX2b dataset is near perfect, see Table 2
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Dataset T% PCT % Corr % Classif PPV Sens Spec

PC-IMAC-Cu 50% 86.28 (2.71) 100.00 (n/a) 87.07 (3.65) 86.20 (3.96) 86.37 (4.46)
0.50 85.88 (2.79) 96.42 (1.74) 86.67 (3.74) 85.88 (4.07) 85.89 (4.57)
0.63 89.20 (2.62) 83.25 (3.09) 90.16 (3.70) 88.99 (3.83) 89.41 (4.38)
0.75 91.51 (2.54) 69.24 (3.70) 92.59 (3.62) 91.15 (3.70) 91.87 (4.28)

75% 88.72 (3.26) 100.00 (n/a) 89.60 (4.24) 88.46 (4.85) 88.98 (4.99)
0.50 88.38 (3.35) 96.73 (2.09) 89.22 (4.38) 88.13 (4.98) 88.65 (5.14)
0.63 91.61 (3.20) 84.51 (3.91) 92.80 (4.24) 90.99 (4.60) 92.25 (4.90)
0.75 93.58 (3.12) 71.23 (4.74) 95.03 (4.02) 92.71 (4.54) 94.50 (4.71)

85% 89.35 (4.22) 100.00 (n/a) 90.75 (4.97) 88.83 (6.21) 89.90 (5.86)
0.50 89.04 (4.33) 96.98 (2.39) 90.44 (5.10) 88.52 (6.36) 89.62 (6.01)
0.63 92.00 (3.96) 85.32 (4.92) 93.52 (4.73) 91.28 (5.86) 92.78 (5.53)
0.75 94.11 (3.72) 71.87 (6.19) 95.85 (4.33) 93.10 (5.67) 95.24 (5.10)

95% 89.31 (7.06) 100.00 (n/a) 91.64 (7.97) 88.60 (10.57) 90.11 (9.87)
0.50 89.00 (7.23) 97.08 (3.92) 91.33 (8.28) 88.27 (10.81) 89.87 (10.15)
0.63 92.05 (6.83) 85.57 (8.10) 94.25 (7.74) 91.27 (10.07) 92.98 (9.61)
0.75 94.25 (6.35) 73.12 (10.35) 96.49 (6.70) 93.10 (9.89) 95.54 (8.52)

Table 3: 2-Class Q5 classification results on the prostate cancer dataset. T%: Training Percent, PCT:
Probability Classification Threshold, % Corr: Percent Correctly Classified, % Classif: Percent Classified,
PPV: Positive Predictive Value, Sens: Sensitivity, Spec: Specificity. The first row of each training percent
does not utilize probabilistic classification and is shown for comparison; in this row we forced Q5 to classify
100% of the samples into the class with the nearest class mean. Values listed are means in percent, standard
deviations are in parentheses.
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Dataset T% PCT % Corr % Classif PPV Sens Spec

PC-IMAC-Cu 50% 91.11 (2.35) 100.00 (n/a) 92.19 (2.97) 90.54 (3.47) 91.84 (3.37)
0.50 93.06 (2.32) 89.12 (3.63) 93.71 (2.98) 92.45 (3.45) 93.73 (3.20)
0.63 95.84 (1.92) 75.76 (4.24) 95.96 (2.69) 95.59 (2.83) 96.08 (2.74)
0.75 97.45 (1.75) 60.17 (4.52) 97.38 (2.52) 97.30 (2.56) 97.57 (2.40)

75% 92.47 (2.77) 100.00 (n/a) 93.55 (3.39) 91.67 (4.08) 93.41 (3.67)
0.50 94.33 (2.58) 90.33 (3.66) 94.98 (3.33) 93.57 (3.84) 95.15 (3.34)
0.63 96.96 (2.14) 78.36 (4.54) 97.29 (2.80) 96.44 (3.29) 97.46 (2.66)
0.75 98.30 (1.86) 63.84 (5.31) 98.41 (2.49) 98.00 (2.93) 98.58 (2.23)

85% 92.80 (3.51) 100.00 (n/a) 94.12 (4.09) 91.95 (5.32) 93.84 (4.53)
0.50 94.58 (3.22) 90.81 (4.48) 95.50 (3.93) 93.66 (5.11) 95.57 (3.98)
0.63 97.16 (2.60) 79.22 (5.44) 97.56 (3.30) 96.66 (4.21) 97.67 (3.17)
0.75 98.56 (1.99) 65.27 (6.23) 98.73 (2.68) 98.26 (3.26) 98.84 (2.47)

95% 93.14 (5.75) 100.00 (n/a) 94.78 (6.65) 91.90 (9.08) 94.46 (7.19)
0.50 94.64 (5.59) 92.02 (6.56) 96.08 (6.33) 93.23 (9.09) 96.05 (6.45)
0.63 97.29 (4.31) 80.63 (9.08) 98.17 (4.83) 96.29 (7.35) 98.19 (4.79)
0.75 98.72 (3.26) 67.13 (10.30) 99.21 (3.64) 98.08 (5.82) 99.27 (3.40)

Table 4: 3-class Q5 classification results on the prostate cancer dataset. Positive predictive value, sensitivity,
and specificity are measured with PC as the ‘positive’ result and either NH or BPH as the ‘negative’ result.
The first row of each training percent does not utilize probabilistic classification and is shown for comparison;
in this row we forced Q5 to classify 100% of the samples into the class with the nearest class mean. A
sample is considered correctly classified if it is assigned to the proper class, (NH, BD, PC). T%: Training
Percent, PCT: Probability Classification Threshold, % Corr: Percent Correctly Classified, % Classif: Percent
Classified, PPV: Positive Predictive Value, Sens: Sensitivity, Spec: Specificity. Values listed are means in
percent, standard deviations are in parentheses.
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A

Classification
Spectra Type NH BPH PC

NH 99.9 (0.5) 0.0 (0.0) 0.1 (0.5)
BPH 0.1 (0.4) 91.1 (6.2) 8.9 (6.2)
PC 0.4 (0.8) 4.0 (2.7) 95.6 (2.8)

B

Classification
Spectra Type NH BPH PC

NH 100.0 (0.0) 0.0 (0.0) 0.0 (0.0)
BPH 0.0 (0.0) 95.2 (13.2) 4.6 (12.5)
PC 0.1 (1.4) 3.6 (7.2) 96.3 (7.4)

Table 5: 3-class classification results for the PC-IMAC-Cu dataset. (A) 50% Training with a 0.63 prob-
ability classification threshold. (B) 95% Training with a 0.63 probability classification threshold. Average
performance is reported with the standard deviation in parentheses. NH: Normal Healthy, BPH: Benign
Prostatic Hypertrophy, PC: Prostate Cancer.
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Figure 4: The probability classification threshold vs. percent-classified (Classif), percent-correctly classified
(Correct), positive predictive value (PPV), sensitivity (Sens), and specificity (Spec) for two D-runs of Q5
on the PC-IMAC-Cu dataset. (A) 2-Class LDA, 50% of samples used in training, (B) 2-Class LDA, 95%
of samples used in training. (C) 3-Class LDA, 50% of samples used in training, (D) 3-Class LDA, 95%
of samples used in training. Increased probability classification threshold increases Q5’s percent-correctly
classified, positive predictive value, sensitivity, and specificity while decreasing the percent-classified.
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SwissProt Matches TrEMBL Matches

Dataset Window Size Human Mouse Human

OC-WCX2b 15 Da. 37(7) 21(1) 492(19)
PC-IMAC-Cu 15 Da. 24(6) 19(2) 391(31)

Table 6: We computed spectral-space discriminants for the Ovarian OC-WCX2b and Prostate PC-IMAC-
Cu datasets. For each dataset, the average discriminant ē•, is computed for one D-run over all spectra
(Eq. 1). The significance vector s is computed as described in Methods (Eq. 2). The 400 largest m/z
discriminant peaks (absolute value) – the most significant peaks for classification – were identified. A ±15
Dalton window around each peak was used to search the SwissProt and TrEMBL protein databases [6].
The number of false positive proteins was found to increase with the size of the search window. The search
window was selected to account for small post-translational modifications while minimizing the number of
false positives. Using the database search, Q5 was able to find a number of protein and protein fragments
with masses consistent with the most significant discriminant peaks. The table lists the number of entries
in the database that matched our search query. In parentheses are the number of proteins with functional
annotations: ovary, ovarian, growth, cancer, carcinoma, tumor, serum, or plasma (for the prostate cancer
dataset, prostate was used in place of ovary and ovarian).
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Figure 5: The normalized discriminant for ovarian dataset OC-WCX2b (top) and prostate dataset PC-
IMAC-Cu (bottom) starting at an m/z value of 500. The location of the SwissProt and TrEMBL
proteins noted in the text are indicated by their identification numbers for each discriminant (see text). These
SwissProt and TrEMBL proteins are consistent with m/z peaks of the discriminant having significance
for classification. Due to mass-aliasing, the database lookup does not prove these proteins present in the
serum samples, but these proteins can serve as leads in the search for novel biomarkers.
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A B C

Figure 6: (A) Two disjoint sets of zero-meaned points in two-dimensional space. The first PCA component
(solid line) and the LDA discriminant (dotted line) are shown. (B) Projection of both point sets onto the
first principal component (solid line). This projection does not separate the two sets. (C) Projection of both
point sets onto the LDA-computed discriminant (dotted line). The two sets of points are well separated. A
test sample (green square) is easily classified by projecting onto the LDA-computed discriminant.
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