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A Polynomial-Time Nuclear Vector Replacement Algorithm
for Automated NMR Resonance Assignments

Christopher James Langmead∗ Anthony Yan∗ Ryan Lilien ∗

Lincong Wang∗ Bruce Randall Donald∗,†,‡,§,¶

Abstract: High-throughput NMR structural biology can play
an important role in structural genomics. We report an automated
procedure for high-throughput NMR resonance assignment for a
protein of known structure, or of an homologous structure. These
assignments are a prerequisite for probing protein-protein inter-
actions, protein-ligand binding, and dynamics by NMR. Assign-
ments are also the starting point for structure determination and
refinement. A new algorithm, calledNuclear Vector Replacement
(NVR) is introduced to compute assignments that optimally corre-
late experimentally-measured NH residual dipolar couplings (RDCs)
to a givena priori whole-protein 3D structural model. The al-
gorithm requires only uniform15N-labelling of the protein, and
processes unassigned HN-15N HSQC spectra, HN-15N RDCs, and
sparse HN-HN NOE’s (dNNs), all of which can be acquired in a
fraction of the time needed to record the traditional suite of ex-
periments used to perform resonance assignments. NVR runs in
minutes and efficiently assigns the (HN,15N) backbone resonances
as well as thedNNs of the 3D15N-NOESY spectrum, inO(n3)
time. The algorithm is demonstrated on NMR data from a 76-
residue protein, human ubiquitin, matched to four structures, in-
cluding one mutant (homolog), determined either by X-ray crystal-
lography or by different NMR experiments (without RDCs). NVR
achieves an average assignment accuracy of over 90%. We further
demonstrate the feasibility of our algorithm for different and larger
proteins, using NMR data for hen lysozyme (129 residues, 98% ac-
curacy) and streptococcal protein G (56 residues, 95% accuracy),
matched to a variety of 3D structural models. Finally, we extend
NVR to a second application, 3D structural homology detection,
and demonstrate that NVR is able to identify structural homolo-
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gies between proteins with remote amino acid sequences using a
database of structural models.

Abbreviations used: NMR, nuclear magnetic resonance; NVR, nuclear vec-
tor replacement; RDC, residual dipolar coupling; 3D, three-dimensional;
HSQC, heteronuclear single-quantum coherence; HN, amide proton; NOE,
nuclear Overhauser effect; NOESY, nuclear Overhauser effect spectroscopy;
dNN, nuclear Overhauser effect between two amide protons; MR, molecu-
lar replacement; SAR, structure activity relation; DOF, degrees of freedom;
nt., nucleotides; SPG, Streptococcal protein G;SO(3), special orthogonal
(rotation) group in 3D.

1 Introduction
Current efforts in structural genomics are expected to determine ex-
perimentally many more protein structures, thereby populating the
“space of protein structures” more densely. This large number of
new structures should make techniques such as X-ray crystallog-
raphy molecular replacement (MR) and computational homology
modelling more widely applicable for the determination of future
structures. High-throughput NMR structural biology can play an
equally important role in structural genomics. NMR techniques
can determine solution-state structures (which are biochemically
closer to physiological conditions than the crystalline state), and
can be initiated immediately after protein purification, without re-
sort to a lengthy search for high-quality crystals. NMR is ideally
suited to probing and analyzing changes to the local electronic en-
vironments, yielding rapid, detailed studies of protein-protein and
protein-ligand interactions, and dynamics. A large fraction of the
proteins of unknown function are NMR-accessible in terms of size
and solubility. For these reasons, the NIH Protein Structure Ini-
tiative [44] has concentrated on both NMR and X-ray techniques
as the paths to determine experimentally 10,000 new structures by
2010.

A key bottleneck in NMR structural biology is the resonance
assignment problem. We seek to accelerate protein NMR reso-
nance assignment and structure determination by exploitinga pri-
ori structural information. NMR assignments are valuable, even
when the structure has already been determined by X-ray crys-
tallography or computational homology modelling, because NMR
can be used to probe protein-protein interactions [21] (via chemical
shift mapping [12]), protein-ligand binding (via SAR by NMR [57]
or line-broadening analysis [19]), and dynamics (via, e.g., nuclear
spin relaxation analysis [47]). By analogy, in X-ray crystallogra-
phy, the molecular replacement (MR) technique [52] allows solu-
tion of the crystallographic phase problem when a “close” or ho-
mologous structural model is knowna priori. It seems reason-
able that knowing a structural model ahead of time could expedite
resonance assignments. In the same way that MR attacks a criti-
cal informational bottleneck (phasing) in X-ray crystallography, an
analogous technique for “MR by NMR” should address the NMR



Experiment/Data Information Role in NVR Acquisition
Content Time

HN-15N HSQC HN,15N Chemical shifts Backbone resonances, 1/2 hr.
Cross-referencing NOESY

HN-15N RDC (in 2 media) Restraints on amide Tensor Estimation, 1/2 hr. +
internuclear vector orientation Resonance Assignment, 1/2 hr.

Structure Refinement

H-D exchange HSQC Identifies solvent exposed Resonance Assignment 1/2 hr.
amide protons

HN-15N HSQC-NOESY Distance restraints Resonance Assignment 12 hrs.
between spin systems

Structural model of backbone Tertiary Structure Tensor Estimation, assumed given
Resonance Assignment,
Structure Refinement

Table 1: NVR Experiment Suite: The 5 unassignedNMR spectra used by NVR to perform resonance assignment and structure refinement. The
HSQC provides the backbone resonances to be assigned. The two HN-15N RDC spectra (which are modified HSQCs) provide independent, global
restraints on the orientation of each backbone amide bond vector. The H-D exchange HSQC identifies fast exchanging amide protons. These amide
protons are likely to be solvent-exposed and non-hydrogen bonded and can be correlated to the structural model. A sparse number (< 1 per residue)
of dNNs can be obtained from the NOESY. ThesedNNs provide distance constraints between spin systems which can be correlated to the structural
model. The data acquisition times are estimated assuming the spectrometer is equipped with a cryoprobe. Additional set-up time may be needed for
each experiment.

resonance assignment bottleneck. We propose a new RDC-based
algorithm, calledNuclear Vector Replacement (NVR), which com-
putes assignments that correlate experimentally-measured RDCs to
a givena priori whole-protein 3D structural model. We believe this
algorithm could form the basis for “MR by NMR”.

NVR performs resonance assignment and structure refinement
from a sparse set of NMR data. Performing resonance assign-
ments given a structural model may be viewed as a combinatorial
optimization problem — each assignment must match the exper-
imental data, subject to the geometric and topological constraints
of the known structure. Previous algorithms for solving the as-
signment problem using RDCs and a structural model [1, 32] re-
quire 13C-labelling and RDCs from many different internuclear
vectors (for example,13C ′-15N, 13C ′-HN, 13Cα-Hα, etc.), many
days of spectrometer time, and use less efficient algorithms. In con-
trast, NVR requires only amide bond vector RDCs. Furthermore,
NVR requires no triple-resonance experiments, and uses only15N-
labelling, which is an order of magnitude less expensive than13C-
labelling. In NVR, the experimentally-measured internuclear bond
vectors are conceptually “replaced” by model internuclear bond
vectors to find the correct assignment. The NVR algorithm searches
for the assignments that best correlate the experimental RDCs,dNNs
and amide exchange rates with a whole-protein 3D structural model.
NVR processes unassigned HSQC, HN-15N RDCs (in two media),
amide exchange data, and 3D15N-NOESY spectra, all of which
can be acquired in about one day using a cryoprobe.

NVR is demonstrated on NMR data from a 76-residue protein,
human ubiquitin, matched to four structures determined either by
X-ray crystallography or bydifferentNMR experiments (without
RDCs, and using a different NOESY spectrum than that processed
by NVR), achieving an average assignment accuracy of over 90%.
In other words, we did not fit the data to a model determined or
refined by that same data. Instead, we tested NVR using structural
models that were derived using either (a) different techniques (X-
ray crystallography) or (b) different NMR data. We further demon-
strate the feasibility of our algorithm for different and larger pro-

teins, using NMR data for hen lysozyme (129 residues) and strep-
tococcal protein G (56 residues), matched to 16 different 3D struc-
tural models. Finally, when an homologous structure is employed
as the model, it is straightforward to perform structure refinement
after NVR. For this purpose one uses the assigned RDCs to facili-
tate rapid structure determination.

1.1 Organization of paper
We begin, in Section 2, with a review of the specific NMR exper-
iments used in our method, highlighting their information content.
Section 3 describes existing techniques for resonance assignment
from RDC data, including a discussion of their limitations and com-
putational complexity. In section 4, we detail our method and ana-
lyze its computational complexity. Section 5 presents the results of
applying our method on real biological NMR data. Section 5.1 ex-
tends some of the key techniques in NVR to a new application, 3D
structural homology detection. Finally, section 6 discusses these
results.

2 Background
The experimental inputs to NVR are detailed in Table 1. Resid-
ual dipolar couplings (RDCs) [59] provideglobal orientational re-
straints on internuclear vectors1 (these global restraints are often
termed“long-range” in the literature). For good introductions to
RDCs see [54, 41, 59]. For each RDCD, we have

D = DmaxvTSv, (1)

whereDmax is the dipolar interaction constant,v is the internuclear
vector orientation relative to an arbitrary substructure frame, andS
is the 3 × 3 Saupeorder matrix, or alignment tensor specifying
the orientation of the molecule in the laboratory frame [54].S is
a symmetric, traceless, rank 2 tensor with 5 degrees of freedom,
which describes the average substructure alignment in the dilute

1Often, these internuclear vectors are bond vectors (e.g.,15N-1H).
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(1) Tensor 
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Figure 1: Nuclear Vector Replacement.Schematic of the NVR algorithm for resonance assignment. The NVR algorithm takes as input a model
of the target protein and several unassigned spectra, including the15N-HSQC, HN-15N RDC, 15N-HSQC NOESY, and an H-D exchange-HSQC to
measure amide exchange rates. In the first stage, NVR estimates the alignment tensors for both media. This step takes timeO(nk3), wheren is the
number of residues andk is the resolution of the search grid. In the second phase the estimated tensors are used to bootstrap an iterative process
wherein the resonance assignments are computed using a Bayesian framework. This entire process runs in minutes, and is guaranteed to converge
in time O(n3). In the final phase, the model structure is refined using the residue-specific geometric constraints imposed by the RDCs (which were
assigned in phase 2). When complete, NVR outputs both a refined structure and a set of resonance assignments.

liquid crystalline phase [41]. The measurement of five or more
RDCs in substructures of known geometry allows determination of
S. Furthermore, using Eq. (1), substructures of the protein may
be oriented relative to a common coordinate system, theprincipal
order frame.

OnceS is estimated, RDCs may be simulated (back-calculated)
given any other internuclear vectorvi. In particular, suppose an
(HN,15N) peaki in an HN-15N HSQC (subsequently termed simply
“HSQC”) spectrum is assigned to residuej of a protein, whose
crystal structure is known. LetDi be the measured RDC value
corresponding to this peak. Then the RDCDi is assigned to amide
bond vectorvj of a known structure, and we should expect that
Di ≈ DmaxvTj Svj (modulo noise, dynamics, crystal contacts in
the structural model, etc).

It is reasonable, in principle, to cast the problem of resonance
assignment of a known structure using RDCs, into a combinato-
rial optimization framework [32]. Hence, initially, we attempted to
treat the problem as an optimal bipartite matching problem. The
use of multiple tensors for interpreting RDCs is a standard tech-
nique. Given estimates for the two alignment tensors, a bipartite
graph was constructed between peaks and residues. Each edge
weight was the difference between the observed RDC for a given
peak, and the back-computed RDC for a given residue. A maxi-
mum bipartite matching algorithm [35] was implemented to com-
pute the matching that minimized the sum of the edge weights
in the bipartite graph. Interestingly, the matching that minimizes
these weights, is typically not the correct matching. In experi-
ments on experimental RDC data from human ubiquitin matched
to 4 different structural models, maximum bipartite matchings con-
tained, on average, only 25% correct assignments, and no higher
than 40% (Table 4). Noise in the RDC data may explain these re-
sults. Experimentally recorded residual dipolar couplings deviate
from their predicted values. These deviations can be large or small
and may be the result of dynamics, discrepancies between the ide-
alized physics and the conditions in solution, and, when the model
structure is derived from crystallography, crystal contacts and con-
formational differences between the protein in solution versus in
the crystalline state. To overcome the uncertainty introduced by
these deviations, NVR incorporates the additional, independent ge-
ometric constraints contained in amide exchange rates and NOEs.

NOE distance restraints are extracted from thedNN region of an

unassigned15N HSQC-NOESY. NVR uses asparseset of NOEs.
By sparse, we mean a small number of unassigned NOEs. A sparse
set ofdNNs can be obtained from an unassigned NOESY spectrum,
after it is referenced to the15N-HSQC spectrum. In our trials on
ubiquitin, for example, we obtained 34dNNs, from an unassigned
3D 15N-NOESY spectrum [30]. This amounts to fewer than 0.5
dNNs per residue on average. In contrast, when solving a pro-
tein structure using NMR, it is not uncommon to have 10-15, or
moreassignedNOEs per residue. In NVR,dNNs are interpreted
as geometric constraints, as follows: If a particular spin system
i has adNN with spin systemj, and i is assigned to a particu-
lar residuer, thenj’s possible assignments are constrained to the
set of residues that are within 6̊A of r in the model. Similarly,
HSQC peaks that exchange rapidly with the solvent, as identified
by amide exchange experiments, are constrained to be assigned to
non-hydrogen bonded surface amide protons in the model.

3 Prior Work
AssignedRDCs have previously been employed by a variety of
structure refinement [14] and structure determination methods, [31,
3, 63] including: orientation and placement of secondary structure
to determine protein folds [22], pruning an homologous structural
database [4, 42],de novostructure determination [51], in combi-
nation with a sparse set of assigned NOE’s to determine the global
fold [43], and a method developed by Bax and co-workers for fold
determination that selects heptapeptide fragments best fitting the
assigned RDC data [17]. Bax and co-workers termed their tech-
nique “molecular fragment replacement,” by analogy with X-ray
crystallography MR techniques.

In contrast, our algorithm processesunassignedRDCs. Unas-
signed RDCs have been used to expedite resonance assignments.
Chemical shift degeneracies (particularly13C-resonance overlap)
in triple resonance through-bond correlation spectra can lead to am-
biguity in determining the sequential neighbors of a residue. RDC
contributions have been shown to overcome these limitations [67,
17]. In another study, RDCs were used by Prestegard and co-
workers [58] to prune the set of potential sequential neighbors in-
dicated by a degenerate HNCA spectrum, yielding an algorithm for
simultaneous resonance assignment and fold determination. These
methods (except [58]) require13C-labelling and RDCs from many
different internuclear vectors (for example,13C ′-15N, 13C ′-HN,
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Figure 2: Tensor Estimation and Resonance Assignment.(Left) Tensor Estimation: The NVR method estimates the alignment tensor for
a given aligning medium in two steps. First,Da and Dr are computed using the powder pattern method. Next, the best rotation of the model
is computed using the estimatedDa and Dr . This can be computed inO(nk3) time (see text). (Right) Resonance Assignment: NVR computes
resonance assignments using an iterative algorithm. Before the iteration begins, geometric constraints are extracted from the15N HSQC NOESY
and H-D exchange HSQC and correlated to the model structure and the peaks in the HSQC. The initial tensor estimates bootstrap the iterative
process. During each iteration, the probability of each remaining (resonance7→ residue) assignment is (re)computed using the model, the tensors,
and the RDCs. The most probable assignments are made, and the tensor estimates are refined at the end of each iteration (see Fig. 1). This process
takesO(n2) time, wheren is the number of resonances. At least one residue is assigned each iteration. Thus, the entire protein is assigned inO(n3)

time.

13Cα-Hα, etc.). The CAP method for small RNA assignment [1],
also requires13C-labelling and many RDCs in addition to many
through-bond, triple resonance experiments. More recently, Brüschweiler
and co-workers [32] have reported a method for resonance assign-
ment (which we eponymously termHPB) that uses RDCs to as-
sign a protein of known structure. The HPB method iteratively
solves for both the alignment tensorS and the resonance assign-
ments. It requires several RDCs per residue and the recording of
two 13C triple resonance experiments. Our method addresses the
same problem as HPB, but uses a different algorithm and requires
only amide bond vector RDCs, no triple-resonance experiments,
and no13C-labelling (cf. Ẅuthrich: [65] “A big asset with regard
to future practical applications. . . [is] . . . straightforward, in-
expensive experimentation. This applies to the isotope labelling
scheme as well as to the NMR spectroscopy...”). In general,13C-
labelling is necessary both for triple resonance experiments, and to
measure two-bond13C ′-1H and one-bond13C ′-15N dipolar cou-
pling constants. Of previous efforts in structure-based assignment,
only one group has tried to minimize the cost of isotopic labelling:
Prestegard and co-workers [58] probed a rubredoxin protein that
was small enough (54 residues) and soluble enough (4.5 mM) to
explore using15N enrichment, but with13C at natural abundance.

From a computational standpoint, NVR adopts a minimalist ap-
proach [7], demonstrating the large amount of information avail-
able in a few key spectra. By eliminating the need for triple reso-
nance experiments, NVR saves several days of spectrometer time.
The NVR protocol also confers advantages in terms of computa-
tional efficiency. The combinatorial complexity of the assignment
problem is a function of the numbern of residues (or bases in a
nucleic acid) to be assigned, and the spectral complexity (degree of
degeneracy and overlap in frequency space). For example, CAP [1]
has been applied withn = 27 nt., and the time complexity of CAP
grows exponentially withn. In particular, CAP performs an ex-
haustive search, making it difficult to scale up to larger RNAs.
HPB runs timeO(In3), whereO(n3) is the complexity of bipartite
matching [35] andI is the number of times that the Kuhn-Munkres
matching algorithm is called. [32] does not boundI or prove con-
vergence of HPB (i.e., how many timesI will the bipartite match-

ing algorithm be called before HPB terminates). However,I may
be bounded byO(k3), the size of the discrete grid search for the
principal order frame overSO(3) (using Euler anglesα, β andγ).
Here,k is the resolution of the grid. Thus, the full complexity of
HPB isO(k3n3). Our algorithm is combinatorially efficient, runs
in minutes, and is guaranteed to converge inO(nk3 + n3) time,
scaling easily to proteins in the middle NMR size range (n = 56 to
129 residues).

4 Nuclear Vector Replacement
The NVR method has three stages:Tensor Estimation, Resonance
Assignment, andStructure Refinement(Fig. 1). In the first stage,
the alignment tensors for each aligning medium2 are estimated. Let
S1 andS2 be the estimated tensors for the phage and bicelle media,
respectively. These tensors correspond to the matrixS in Eq. (1).
Macromolecules align differently in different liquid crystals, thus
S1 andS2 are different matrices.S1 andS2 are used to bootstrap
stage two. The output of stage two is the resonance assignments.
These assignments, and the geometric constraints imposed from the
RDCs, are used to refine the structural model in stage three.

4.1 Tensor Estimation (Phase 1)
An alignment tensor is a symmetric and traceless 3× 3 matrix with
five degrees of freedom. The five degrees of freedom correspond
to three Euler angles (α, β andγ), describing the average partial
alignment of the protein, and the axial (Da) and rhombic (Dr)
components of an ellipsoid that scales the dipolar couplings. When
resonance assignments and the structure of the macromolecule are
known, all five parameters can be computed by solving a system of
linear equations [41]. If the resonance assignments are not known,
as in our case, these parameters must be estimated. It has been
shown [41] thatDa andDr can be decoupled from the Euler an-
gles by diagonalizing the alignment tensor:

2For the purpose of exposition, we will refer specifically to bicelle
and phage aligning media, as per the data we processed [15, 38, 56].
NVR, however, would work on residual dipolar couplings recorded
in other media as well (e.g., stretched polyacrylamide gels [13]).
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S = VΣVT (2)

Here,V ∈ SO(3) is a3× 3 rotation matrix3 that defines a coordi-
nate system called theprincipal order frame.Σ is a3× 3 diagonal
and traceless matrix containing the eigenvalues ofS. The diagonal
elements ofΣ encodeDa andDr: Da = Szz

2
, Dr =

Sxx−Syy
3

whereSyy < Sxx < Szz. Syy, Sxx andSzz are the diagonal ele-
ments ofΣ and therefore the eigenvalues ofS. It has been shown
thatDa andDr can be estimated, using only unassigned experi-
mentally recorded RDCs, by the powder pattern method [63]. The
axial and rhombic components of the tensor can be computed in
timeO(nk2) (Fig. 2), wheren is the number of observed RDCs
andk is the resolution of the search-grid overDa andDr.

Once the axial and rhombic components have been estimated,
matrix Σ in Eq. (2) can be constructed using the relationship [41,
63] between theDa andDr and the diagonal elements ofΣ. Next,
the Euler anglesα, β andγ of the principal order frame are es-
timated by considering rotations of the model. GivenΣ (Eq. 2),
for each rotationV (α, β, γ) of the model, a new Saupe matrixS
is computed using Eq. (2). That matrixS is used to compute a
set of back-computed RDCs using Eq. (1). The relative entropy,
also known as the Kullback-Leibler distance [36], is computed be-
tween the histogram of the observed RDCs and the histogram of the
back-computed RDCs. The rotation of the model that minimizes
the relative entropy is chosen as the initial estimate for the Euler
angles. The comparison of distributions to evaluate Euler angles
is conceptually related to the premise used by the powder pattern
method [63] to estimate the axial and rhombic components of the
tensor. In the powder pattern method, the observed RDCs are im-
plicitly compared to a distribution of RDCs generated by a uniform
distribution of internuclear vectors. When estimating the Euler an-
gles, NVR explicitly compares the distributions using a relative en-
tropy measure. Intuitively, the correct rotation of the model will
generate a distribution of RDCs that is similar to the unassigned
distribution of experimentally measured RDCs (Fig. 3). The rota-
tion minimizing the Kullback-Leibler distance can be computed ex-
actly in polynomial time using the first-order theory of real-closed
fields (see appendix A); in practice we implemented a discrete grid
3While any representation of rotations may be employed, we use
Euler angles(α, β, γ).

search. This rotation search (Fig. 2) takesO(nk3) time for n
residues on ak × k × k grid. Thus, we can estimate alignment
tensors inO(nk3) time. In practice, it takes NVR a few minutes to
estimate the alignment tensors.

Although the initial tensor estimates are not perfect, they are
accurate enough to bootstrap the second phase,resonance assign-
ment, described below. For example, differences of up to 20◦ be-
tween the actual and estimated Euler angles were seen for one
of our test proteins (Fig. 4). The magnitude of these deviations
can be interpreted geometrically in terms of surface area on the
unit sphere. The surface area of a region on the unit sphere en-
closed by a latitudinal circle drawnη degrees from the North pole
is
∫ η

0
2π sin θdθ. Hence, the set of all deviations≤ 20◦ represent

only 3% of the total surface area of unit sphere (4π). Due to the
symmetry of the dipolar operator, one must double that area. Still,
relative to the distribution of possible errors, a 20◦ angular devia-
tion falls into the 94 percentile of accuracy.

4.2 Resonance Assignment (Phase 2)
The input to phase 2 (Fig. 2) includes the two order matricesS1

andS2 computed in phase 1. Each order matrix is used to compute
a set of expected RDCs from the model using Eq. (1). LetQ be
the set of HSQC peaks,R be the set of residues in the protein,Dm
be the set of observed RDCs in mediumm, andBm be the set of
back-computed RDCs using the model andSm. For each medium
m, a n-peak× n-residue probability matrixMm is constructed.
The rows ofMm correspond to some fixed ordering of the peaks
in the HSQC. Similarly, the columns ofMm correspond to some
fixed ordering of the residues in the protein. The assignment prob-
abilities are computed as follows:

Mm(q, r) = P(q 7→ r|Sm) = N(dm(q)− bm(r, Sm), µm, σm)
(3)

whereq ∈ Q andr ∈ R, dm(q) ∈ Dm, bm(r, Sm) ∈ Bm. The
functionN(dm(q) − b(r, Sm), µm, σm) is the probability of ob-
serving the differencedm(q) − b(r, Sm) in a normal distribution
with meanµm and standard deviationσm. We usedµm = 0 Hz
andσm = 1 Hz in all our trials. Intuitively,Mm(q, r) is the proba-
bility that peakq is assigned to resider in mediumm. An individ-
ual entry ofMm may be set to zero if the assignmentq 7→ r vio-
lates a geometric constraint imposed by adNN or amide exchange.
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Figure 4: Ubiquitin Tensor Estimates. These panels demonstrate the accuracy of the first step of the NVR algorithm where two tensors are
estimated, one for the bicelle medium, and one for the phage medium. (Upper Left Panel) Percentage difference for the axial and rhombic terms,
Da andDr , for the four models, 1G6J, 1UBI, 1UBQ and 1UD7, vs. the actual axial and rhombic terms in the bicelle medium. (Lower Left Panel)
Angular differences (in degrees) between the eigenvectors of the estimated tensors and the eigenvectors of the actual tensors in the bicelle medium.
Szz is the director of the tensor (i.e., the eigenvector associated with the largest eigenvalue of the tensor),Sxx and Syy are eigenvectors associated
with the second largest and smallest eigenvalue of the tensor, respectively. (Upper Right Panel, Lower Right Panel) Accuracy of the tensor estimates
in the phage medium. Differences in the orientation of the eigenvectors are as large as 20◦. However, angular deviations of 20◦ represent only3% of
the total surface area of the unit sphere (see text).

On each iteration, the probabilities of assignment are (re)computed
using Eq. (3). For each row inM1 andM2 the most likely as-
signment is considered. Letr1(q) ∈ R and r2(q) ∈ R be the
most likely resonance assignment for peakq in media 1 and 2, re-
spectively. The assignmentq 7→ r is added to the master list of
assignments ifr1(q) = r2(q) and the following condition is met:

rm(q) 6= rm(k) m = 1, 2; ∀k ∈ Q, k 6= q. (4)

When an assignment is made, peakq and residuer are removed
from consideration in subsequent iterations. Thus, the size of ma-
tricesM1 andM2 decreases with each iteration. At the end of
each iteration alignment tensorsS1 andS2 are refined by using the
master list of assignments and the model, by means of the SVD
method [41]. The tensors, which were coarsely estimated in phase
1 of NVR, begin to converge to their true values with each itera-
tion.4 At the end of phase 2, the principal axes of the final tensor
estimates are typically within one degree, and the axial and rhombic
components are within 1-2% of their correct values, respectively.

Intuitively, NVR only makes assignments that are a) unambigu-
ous and b) consistent across both media. Figure 5 shows an ex-
ample of the first few iterations of NVR on NMR data for human

4For the purposes of comparison and to quantitate the accuracy of
NVR, “true” values of the alignment tensors were determined by
(a) published values in the literature[15, 38, 56] and/or (b) comput-
ing the optimal Saupe matrix using the correct assignments.

ubiquitin using 1UBQ as a model structure. The probabilistic na-
ture of NVR means that it is straightforward to generate confidence
scores for each assignment. These confidence scores are reported to
the user. The highest-confidence assignments tend to be in regions
of regular secondary structure (Fig 6).

The computational complexity of the second phase is as follows.
M1 andM2 are each of sizeO(n × n), wheren is the number
of residues in the protein. Re-computing the tensors, using the
Moore-Penrose pseudo-inverse of theO(n) × 5 matrix takes time
O(n2) [25]. At least one residue is assigned per iteration, thus, the
running time is

∑n
i=1(i2 + i2) = O(n3) and the resonance assign-

ment phase is guaranteed to complete inO(n3) time. In practice,
the resonance assignments can be computed in a couple of minutes
on a Pentium-class workstation.

Occasionally, at the end of Phase 2, it happens that Eq. (4) can-
not be satisfied. This only occurs on the last few iterations when,
for example, the remaining 2 peaks each vote for the same residue.
NVR handles this case by performing a maximum bipartite match-
ing [35] for those peaks, and the second phase terminates. This
does not increase the time-complexity. As previously mentioned,
bipartite matching did not perform well when run on alln residues
andO(n) peaks: we only use it in the endgame to resolve the very
small number of remaining assignments that Eq. (4) cannot disam-
biguate.

4.3 Structure Refinements (Phase 3)
Once the final set of assignments has been computed, the (now)



Iteration 1 Bicelle: {(5,Thr7), (10,Thr14), (15,Ser20), ….}
Phage: {(5,Ile13), (10,Thr14), (15,Ser20), ….}

Assignments = {}

Iteration 2 Bicelle: {(5,Thr7), (16,Asp21), (21,Lys27), (52,Lys63), ….}
Phage: {(5,Ile13), (16,Asp21) , (21,Lys27), (52,Lys63) , ….}

Assignments = { (10,Thr14), (15,Ser20)}

Assignments = { (10,Thr14), (15,Ser20), (16,Asp21), 
(21,Lys27), (52,Lys63), }

Figure 5: Iterative Assignments. The first two iterations of NVR with model 1UBQ. The assignment list is initially empty. At the end of the
first iteration, both the phage and bicelle media “agree” that peaks 10 and 15 are residues Thr14 and Ser20, respectively. Consequently, those two
assignments are added to the master assignment list. Note, there are only 2 assignments so there are not enough variables to update the tensors,S1

and S2, using Eq. (1). At the beginning of the 2nd iteration, the probability matrices,M1 andM2, are updated to reflect the fact that peaks Thr14
and Ser20 are already assigned. At the end of the second iteration, both the phage and bicelle media agree that peaks 16, 21 and 52 are Asp21, Lys27
and Lys63, respectively. These three assignments are added to the master assignment list. Now there are 5 assignments soS1 and S2 can be updated
using Eq. (1). This procedure continues until the entire protein is assigned.

assigned RDCs are used to refine the structure of the model. Let
T ⊂ R be the set of residues whose back-computed RDCs val-
ues (one for each medium) are within 3 Hz of the experimentally
observed RDCs.T is used to refine the structure. A Monte-Carlo
algorithm was implemented to find a (new) conformation of the
model’sφ andψ backbone angles that best matches the observed
RDCs. The program stops when either a) the RMSD between the
RDCs associated with the setT and those back-calculated from the
modified structure is less than0.3 Hz, or b) 1 million structures
have been considered, in which case the structure that best fits the
data is output. The structure generated by the Monte Carlo method
is then energy minimized using the Sander module of the program
AMBER [48]. This minimization is donein vacuo. Figure 7 shows
the results of the structure refinement of ubiquitin model 1G6J. An
11% reduction in RMSD was observed. This illustrates the po-
tential application to structural genomics, in which NVR could be
used to assign and compute new structures based on homologous
models.

5 Results
The molecular structure of human ubiquitin has been investigated
extensively. A variety of data have been published including res-
onance assignments [62, 55], backbone amide residual dipolar cou-
plings recorded in two separate liquid crystals (bicelle and phage) [15],
amide-exchange rates [15],15N-HSQC and15N-HSQC NOESY
spectra [30], and several independent high-resolution structures solved
by both X-ray crystallography [49, 61] and NMR [6, 33]. In 1998,
the Bax lab published a new NMR structure for ubiquitin, (PDB Id:
1D3Z) [15]. Unlike previous ubiquitin structures, 1D3Z was re-
fined using dipolar couplings. NVR was tested on four alternative
high-resolution structures (PDB Ids: 1G6J, 1UBI, 1UBQ, 1UD7)
of human ubiquitin, none of which have been refined using dipolar
couplings. 1G6J, 1UBI and 1UBQ have 100% sequence identity
to 1D3Z. 1UD7 is mutant of ubiquitin where 7 hydrophobic core
residues have been altered (I3V, V5L, I13V, L15V, I23F, V26F,
L67I). 1UD7 was chosen to test the effectiveness of NVR when
the model is a close homolog of the target protein. We ran four

independent trials, one for each of 1G6J, 1UBI, 1UBQ and 1UD7.
In each test, both sets of experimentally recorded backbone amide
dipolar couplings [15] for human ubiquitin were fit to the amide
bond vectors of the selected model.15N-HSQC and15N-HSQC
NOESY spectra [30] were processed to extract sparse, unassigned
dNNs.

NVR achieves an average of over 90% accuracy for the four
ubiquitin models (Table 2 A). The accuracies on NMR data for two
additional proteins, the B1 domain of streptococcal protein G and
lysozyme, were over 95% (See Table 2 B-D). NVR performed well
on 1UD7, a mutant of ubiquitin. This suggests that NVR might
be extended to homologous structures. NVR achieves consistently
high accuracies, suggesting NVR is robust with respect to choice
of model.

We have found that the errors that our algorithm makes are, in
general, easily explained. Almost all errors are symmetric. That is,
if residue A was mistaken for residue B, then B was mistaken for
A. Of all these errors, all but 1% involved dipolar couplings that
were very different from their expected values. For example, in the
trial on ubiquitin model 1G6J, Ser20 was mistaken for Gln49 and
vice-versa. The observed dipolar couplings for these two residues
were an average of 7.9 Hz different from their expected values in
both media. By making the incorrect assignment the NVR method
reduced the apparent discrepancy to an average of 2.4 Hz.

There were only two cases, from our 20 separate trials, where a
small chain of misassignments was seen. Both were from the trial
on the lysozyme model 1LYZ. The following two chains were ob-
served: Gly49→ Ser50→Gly102→ Cys127→Gly49 and Ser72
→Trp123→ Arg73→ Ser72. These cyclic errors are probably
due to the relatively poor initial estimates for the alignment tensors
(data not shown). We are presently extending the NVR method to
include1H and15N chemical shift prediction [46, 64] to determine
whether accurate chemical shift prediction will prevent these kinds
of errors. Br̈uschweiler and co-workers describe a similar chain
(cyclic permutation) of errors [32] for the one protein (1UBI) on
which HPB was tested (Thr9→ Arg74→ Tyr59→ Gly53). NVR
found no cyclic permutation of length longer than 2, for any ubiq-
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Figure 6: Assignment Confidences.NVR returns the confidenceof each assignment. Here the structure of ubiquitin model 1UBQ (shown in two
different orientations) is annotated with the confidence of each assignment. The color depicts the confidence with which the backbone amide group
was assigned. Blue indicates low confidence, or missing data (e.g., prolines, which have no backbone amide group). Red indicates high confidence.
The highest-confidence assignments tend to be in regions of regular secondary structure.

Residues 22-35beforerefinement Residues 22-35after refinement

Figure 7: 1G6J Structure Refinement.In magenta, the backbone of residues 22-35 from the structure 1D3Z. These residues form the firstα-helix
in ubiquitin. 1D3Z is an RDC-refined model. In CPK-coloring, the backbone of residues 22-35 of model 1G6J (on the left) and a new structure (on
the right) generated after structure refinement of 1G6J (using the RDC assignments from NVR). The RMSD between the 2 backbones on the right is
11% smaller than the RMSD of the backbones on the left.

uitin model, including 1UBI.
There was one case where a mistake was made involving a “de-

generate” pair of NH vectors (residues). In the trial on 1UBI, Ile23
was mistaken for His68. The angle between amide bond vectors
from those residues is only 3.4◦. Consequently, there was only a
0.35 Hz difference in the expected dipolar couplings under both
media. The resolution of RDC is at best 0.2 Hz [50], and can be
worse, making these internuclear vector orientations hard to distin-
guish.

In a separate set of trials, we used the final tensors generated
in our first trials to bootstrap the resonance assignment phase of
NVR. Overall, an increase in accuracy of 1% was seen. Additional
iterations yielded no substantial improvement in accuracy. This
suggests that the resonance assignment phase is stable with respect
to the particular tensor estimate.

5.1 3D Structural Homology Detection
We have also extended NVR to a second application — 3D struc-
tural homology detection. While many sequence-based homol-
ogy prediction methods exist, an important challenge remains: two

highly dissimilar sequences can have similar folds. For example,
the backbone RMSD between the human ubiquitin structure (PDB
Id: 1D3Z) and the structure of the Ubx Domain from human Faf1
(PDB Id: 1H8C) is quite small (1.9̊A), yet they have only 16%
sequence identity. NVR is well-suited for identifying these remote
homologies because it only considers the backbone geometry of
each amino acid in the model, not the geometry of side chains. In
particular, given a 3D model of the backbone ofanyprotein, NVR
can compute how well the experimental RDC data fits that model.
One would expect that a structural homolog would fit the data quite
well, while an unrelated structure would not. NVR can also be used
to confirm or refute structural predictions made by other techniques
such as protein threading or sequence homology.

We have assembled a database of 2,456 backbone structural mod-
els from the Protein Data Bank [10] representing a variety of differ-
ent fold-families. The database includes the structures of ubiquitin
(PDB Id: 1D3Z), lysozyme (PDB Id: 1E8L), and SPG (PDB Id:
3GB1) and 5 structural homologs for each of these three proteins
(Table 3). These homologs have between 10-61% sequence ho-



PDB ID Exp. Method Accuracy
1G6J [6] NMR 90

1UBI [49] X-ray (1.8Å) 90
1UBQ [61] X-ray (1.8Å) 93
1UD7 [33] NMR 93

(A: Ubiquitin)

PDB ID Exp. Method Accuracy

193L [60] X-ray (1.3Å) 100%
1AKI [5] X-ray (1.5Å) 100%

1AZF [40] X-ray (1.8Å) 100%
1BGI [45] X-ray (1.7Å) 100%
1H87 [24] X-ray (1.7Å) 98%
1LSC [37] X-ray (1.7Å) 100%

(C: Lysozyme)

PDB ID Exp. Method Accuracy
1GB1 [29] NMR 95%
2GB1 [29] NMR 95%
1PGB [23] X-ray (1.92Å) 95%

(B: SPG)
PDB ID Exp. Method Accuracy

1LYZ [18] X-ray (2.0Å) 91%
2LYZ [18] X-ray (2.0Å) 98%
3LYZ [18] X-ray (2.0Å) 100%
4LYZ [18] X-ray (2.0Å) 96%
5LYZ [18] X-ray (2.0Å) 98%
6LYZ [18] X-ray (2.0Å) 98%

(D: Lysozyme (cont))

Table 2: Accuracy. (A) NVR achieves an average accuracy of over 90% on the four ubiquitin models. The structure 1D3Z [15] is the only published
structure of ubiquitin to have been refined against RDCs. The RDCs used in [15] have been published and were used in each of the 4 NVR trials.
1G6J, 1UBI and 1UBQ have 100% sequence identity to 1D3Z. 1UD7 is a mutant form of human ubiquitin. As such, it demonstrates the effectiveness
of NVR when the model is a close homolog of the target protein. (B-D) The RDCs for the B1 domain of streptococcal protein G [38] and hen
lysozyme [56] were obtained from the PDB. NOEs and amide exchange data were extracted from their associated restraints files. NVR achieves an
average accuracy of 95% (Table B) and 98% (Tables C and D).

mology to 1D3Z, 1E8L and 3GB1. The database contains only the
backbone geometry, the length of the primary sequence, and the
percentage ofα andβ secondary structure for each protein. The
protein’s primary sequence is not used.

Using the primary sequences of our three test proteins (1D3Z,
1E8L, and 3GB1), we estimated their secondary structure using the
programJPRED[16]. The native fold was not used to estimate sec-
ondary structure. Next using the experimental RDCs for the three
test proteins, we ran NVR’s tensor estimation (Sec. 4.1) against
each model in the database. Note that the tensor estimation phase
does not require NOEs nor amide-exchange data. Therefore, it is
not necessary to record these experiments in order to perform ho-
mology detection. Alternatively, homology detection could pro-
ceed in parallel while these experiments are being recorded. The
tensor estimation phase takesO(nk3) time. Thus, a database con-
sisting ofp structural models can be searched inO(pnk3) time.

Each model in the database is assigned a score. Let∆α =| αt−
αm | and∆β =| βt − βm |, whereαt andβt are the predicted
percentages ofα andβ structure for the target protein,t, andαm
andβm are the actual percentages ofα andβ structure taken from
the model,m. Let ∆l be the difference in length betweent andm.
Finally, letKL1 andKL2 be the Kullback-Leibler distances of the
two tensor estimates5 (Sec. 4.1). A model’s score is computed as
follows:

Im = ∆α + ∆β + ∆l +KL1 +KL2. (5)

Each model is then ranked according to its score. As seen in Ta-
ble 3, the highest ranking structure is the native structure. The five
homologous structures are also highly ranked. Figure 8 is a scatter-
plot of the scores computed by NVR vs. the backbone RMSD of
1D3Z to all the models in the database. The native and homologous
structures form a cluster. Thus, NVR is able to identify structural
homologies between proteins with remote amino acid sequences,
without employing or performing resonance assignments.

6 Conclusion
5∆α and∆β are multiplied by 100 so that they have the same order
of magnitude as∆l,KL1, andKL2

We have described a fast, automated procedure for high-throughput
NMR resonance assignments for a protein of known structure, or of
an homologous structure. NMR assignments are useful for prob-
ing protein-protein interactions, protein-ligand binding, and dy-
namics by NMR, and they are the starting point for structure re-
finement. A new algorithm, Nuclear Vector Replacement (NVR)
was introduced to compute assignments that optimally correlate
experimentally-measured NH residual dipolar couplings (RDCs)
to a givena priori whole-protein 3D structural model. NVR re-
quires only uniform15N-labelling of the protein, and processes
unassigned15N-HSQC and H-D exchange-HSQC spectra, HN-15N
RDCs, and sparse HN-HN NOE’s (dNNs), all of which can be ac-
quired in a fraction of the time needed to record the traditional suite
of experiments used to perform resonance assignments. NVR ef-
ficiently assigns the15N-HSQC spectrum as well as thedNNs of
the 3D 15N-NOESY spectrum, inO(n3) time. We tested NVR
on NMR data from 3 proteins using 20 different alternative struc-
tures. When NVR was run on NMR data from the 76-residue pro-
tein, human ubiquitin (matched to four structures, including one
mutant/homolog), we achieved an average assignment accuracy of
over 90%. Similarly good results were obtained on NMR data for
streptococcal protein G (95%) and hen lysozyme (98%) when they
were matched by NVR to a variety of 3D structural models.

We have shown that NVR works well on proteins in the 56-129
residue range. It is to be expected that some modifications may
be needed when scaling NVR to larger proteins. The accuracy of
the powder pattern method is known to increase as the number of
RDCs increases. Thus, our ability to estimate the axial and rhom-
bic components of the alignment tensors should increase with pro-
tein size. Estimating the eigenvectors of the tensors, however, will
become harder as the distribution of amide bond vectors becomes
more uniform. The current version of the NVR algorithm assumes
nearly complete data. We are presently extending it to handle the
case when either the set of resonances or RDCs are incomplete. We
are also exploring incorporating1H and15N chemical shift predic-
tion [46, 64] for NVR.

Finally, we have demonstrated that NVR can be used to identify
3D structural homologies between proteins with remote amino acid
sequences. Furthermore, our success in assigning 1UD7, which is
a mutant of ubiquitin, suggests that NVR could be applied more



PDB ID Homolog Sequence Identity RMSD Rank
1D3Z 100% 0Å 1

1NDD 55.6% 0.6Å 2
1BT0 61.0% 0.7Å 3
1H8C 15.7% 1.9Å 11
1GUA 11.6% 2.1Å 19
1C1Y 11.6% 2.1Å 38

PDB ID Homolog Sequence Identity RMSD Rank
1E8L 100% 0Å 1

2EQL 49.2% 1.8Å 2
1ALC 35.8% 1.8Å 3
1HFZ 38.3% 1.8Å 4
1A4V 38.2% 1.8Å 5
1F6S 38.7% 1.7Å 6

3GB1 100% 0Å 1
1HZ5 14.5% 2.2Å 2
1JML 12.8% 1.8Å 5
1HEZ 12.7% 2.0Å 12
2GCC 10.0% 2.6Å 24
1HZ6 14.5% 2.2Å 55

Table 3: Structural Homology Detection Results. The sequence identity and RMSD of the 3 test proteins and their respective 5
homologs. The final column is the rank of that model (out of 2546 structures), based on the score computed by NVR.

Ubiquitin (1D3Z) SPG (3GB1) Lysozyme (1E8L)

Figure 8: RMSD vs NVR Homology Score. 3 Scatter plots of the backbone RMSD between the native structures of Ubiquitin (left),
SPG (center) and Lysozyme (right) and the models in the database vs the score computed by NVR. Only those proteins whose length
is within 10% of the native structure are shown. The open circles are the data points for the native structure and five homologous
structures. The + signs are the data points associated with non-homologous proteins. The diamond is the 2D mean of the +’s while
the triangle is the 2D mean of the open circles. The trend line shows the correlation between the score computed by NVR and RMSD
for all the data points. The scores associated with the native fold and the 5 homologs are statistically significantly lower than the
scores of unrelated proteins (p-values of2.6× 10−5, 2.3× 10−5, and 2.9× 10−5 for 1D3Z, 1E8L, and 3GB1, respectively).

broadly to assign spectra based on homologous structures. Using
the results of a sequence alignment algorithm [2], protein thread-
ing [39, 66], or homology modelling [11, 20, 26, 34, 53], one would
modify NVR to perform assignments by matching RDCs to an ho-
mologous structure. It is likely that the structure refinement phase
would be folded into the main iterative loop so that the homolo-
gous structure would be simultaneously assigned and refined. Thus,
NVR could play a role in structural genomics.
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APPENDIX

A Complexity of Minimum Kullback-
Leibler Distance

We implemented anO(nk3) discrete-grid rotation search for ini-
tial tensor estimation. We now show how the rotation minimizing
the Kullback-Leibler distance can be computed in polynomial time
(without a grid search) using the first-order theory of real-closed
fields [27, 28, 9, 8]. Hence theO(nk3) discrete-grid rotation search
in Sec. 4.1 can be replaced by a combinatorially precise algorithm,
eliminating all dependence of the rotation search upon the resolu-
tion k.

Suppose two variables of the same type are characterized by
their probability distributionsf andf ′. The relative entropy for-
mula is given byKL(f, f ′) =

∑m
i=1 fi ln(fi/f

′
i), wherem is

the number of levels of the variables. We will use a polynomial
approximation toln(·). Let us represent rotations by unit quater-
nions, and use the substitutionu = tan(θ/2) to ‘rationalize’ the
equations using rotations, thereby yielding purely algebraic (poly-
nomial) equations. LetV be such a rotation (quaternion),D be the
unassigned experimentally-measured RDCs,E be the set of model
NH vectors andB(V ) be the set of unassigned, back-computed
RDCs (parameterized byV ). Hence, from Eqs. (1,2),B(V ) =
ETSE = (ET (V TΣV )E) = {wT (V TΣV )w |w ∈ E }. (We
have ignoredDmax here for the simplicity of exposition). We wish
to compute

argmin
V ∈S3

KL(D,B(V )) (6)

(We use the unit 3-sphereS3 instead ofSO(3), since the quater-
nions are a double-covering of rotation space). Eq. (6) can be tran-
formed into a sentence in the language of semi-algebraic sets (the
first order theory of real closed fields):

∃V0 ∈ S3, ∀V ∈ S3 : KL(D,B(V0)) ≤ KL(D,B(V )). (7)

S3 andSO(3) are semi-algebraic sets, and Eq. (7) is a polyno-
mial inequality with bounded quantifier alternation (a = 1). The
number of DOF (the number of variables) is constant (r = 3 DOF
for rotations), and the size of the equations isO(n). Hence Eq. (7)
can be decided exactly, in polynomial time, using the theory of real-
closed fields. We will use Grigor’ev’s algorithm [27, 28] for decid-
ing a Tarski sentence, which is singly-exponential in the number
of variables, and doubly-exponential only in the number of quan-
tifer alternations. The time complexity of Grigor’ev’s algorithm is

nO(r)4a−2
, which in our case (a = 1, r = 3) reduces tonO(1)

which is polynomial time.




