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Abstract

We report an automated procedure for high-throughput NMR resonance assignment for a protein of known
structure, or of an homologous structure. Our algorithm performs Nuclear Vector Replacement (NVR) by Expect-
ation/Maximization (EM) to compute assignments. NVR correlates experimentally-measured NH residual dipolar
couplings (RDCs) and chemical shifts to a given a priori whole-protein 3D structural model. The algorithm requires
only uniform '>N-labelling of the protein, and processes unassigned HN->N HSQC spectra, HN-'SN RDCs, and
sparse HN-HN NOE’s (dnns). NVR runs in minutes and efficiently assigns the (HY,'SN) backbone resonances
as well as the sparse dxns from the 3D PN-NOESY spectrum, in O (n°) time. The algorithm is demonstrated on
NMR data from a 76-residue protein, human ubiquitin, matched to four structures, including one mutant (homolog),
determined either by X-ray crystallography or by different NMR experiments (without RDCs). NVR achieves an
average assignment accuracy of over 99%. We further demonstrate the feasibility of our algorithm for different and
larger proteins, using different combinations of real and simulated NMR data for hen lysozyme (129 residues) and
streptococcal protein G (56 residues), matched to a variety of 3D structural models.

Abbreviations: NMR, nuclear magnetic resonance; NVR, nuclear vector replacement; RDC, residual dipolar
coupling; 3D, three-dimensional; HSQC, heteronuclear single-quantum coherence; HN, amide proton; NOE,
nuclear Overhauser effect; NOESY, nuclear Overhauser effect spectroscopy; dnn, nuclear Overhauser effect
between two amide protons; MR, molecular replacement; SAR, structure activity relation; DOF, degrees of
freedom; nt., nucleotides; SPG, Streptococcal protein G; SO (3), special orthogonal (rotation) group in 3D; EM,
Expectation/Maximization; SVD, singular value decomposition.

Introduction

We seek to accelerate protein NMR resonance as-
signment and structure determination by exploiting
a priori structural information. By analogy, in X-
ray crystallography, the molecular replacement (MR)
technique (Rossman and Blow, 1962) allows solution
of the crystallographic phase problem when a ‘close’
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or homologous structural model is known a priori,
thereby facilitating rapid structure determination. In
contrast, a key bottleneck in NMR structural bio-
logy is the resonance assignment problem. One would
hope that knowing a structural model ahead of time
could expedite assignments. An automated procedure
for rapidly determining NMR resonance assignments
given an homologous structure, would similarly accel-
erate structure determination. Moreover, even when
the structure has already been determined by x-ray
crystallography or computational homology model-
ling, NMR assignments are valuable because NMR
can be used to probe protein-protein interactions (Fi-
aux et al., 2002) (via chemical shift mapping Chen
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et al.,, 1993)), protein-ligand binding (via SAR by
NMR (Shuker et al., 1996) or line-broadening analysis
(Fejzo et al., 1999)), and dynamics (via, e.g., nuclear
spin relaxation analysis (Palmer, 1997)).

Current efforts in structural genomics are expec-
ted to determine experimentally many more protein
structures, thereby populating the ‘space of protein
structures’ more densely. This large number of new
structures should make techniques such as x-ray crys-
tallography MR and computational homology model-
ling more widely applicable for the determination of
future structures. In the same way that MR attacks
a critical informational bottleneck (phasing) in x-ray
crystallography, an analogous technique for ‘MR by
NMR’ should address the NMR resonance assign-
ment bottleneck. We propose a new RDC-based al-
gorithm, called Nuclear Vector Replacement (NVR)
(Figure 1), which computes assignments that correlate
experimentally-measured residual dipolar couplings,
chemical shifts, HN-HN NOE’s (dnns) and amide ex-
change rates to a given a priori whole-protein 3D
structural model. We believe this algorithm could form
the basis for ‘MR by NMR’.

Residual dipolar couplings (RDCs) (Tjandra and
Bax, 1997; Tolman et al., 1995) provide global orient-
ational restraints on internuclear bond vectors (these
global restraints are often termed ‘long-range’ in the
literature). For each RDC D, we have

D = DpaxV' Sy, (1)

where Dpax is a constant, and v is the internuclear
vector orientation relative to an arbitrary substructure
frame and S is the 3 x 3 Saupe order matrix (Saupe,
1968). S is a symmetric, traceless, rank 2 tensor with
5 degrees of freedom, which describes the average
substructure alignment in the dilute liquid crystalline
phase. The measurement of five or more RDCs in sub-
structures of known geometry allows determination
of S (Losonczi et al., 1999). Once S has been de-
termined, RDCs may be simulated (back-calculated)
given any other internuclear vector v;. In particular,
suppose an (HY,15N) peak i in an HN-'N HSQC
(subsequently termed simply ‘HSQC’) spectrum is
assigned to residue j of a protein, whose crystal struc-
ture is known. Let D; be the measured RDC value
corresponding to this peak. Then the RDC D; is as-
signed to amide bond vector v; of a known structure,
and we should expect that D; ~ Dmaxv]TSV j (mod-
ulo noise, dynamics, crystal contacts in the structural
model, etc).

Assigned RDCs have previously been employed by
a variety of structure refinement (Chou et al., 2000)
and structure determination methods (Hus et al., 2000;
Andrec et al., 2001; Wedemeyer et al., 2002), includ-
ing: orientation and placement of secondary structure
to determine protein folds (Fowler et al., 2000), prun-
ing an homologous structural database (Annila et al.,
1999; Meiler et al., 2000), de novo structure determ-
ination (Rohl and Baker, 2002), in combination with a
sparse set of assigned NOE’s to determine the global
fold (Mueller et al., 2000), and a method developed
by Bax and co-workers for fold determination that se-
lects heptapeptide fragments best fitting the assigned
RDC data (Delaglio et al., 2000). Bax and co-workers
termed their technique ‘molecular fragment replace-
ment’, by analogy with x-ray crystallography MR
techniques. Unassigned RDCs have been previously
used to expedite resonance assignments (Zweckstetter
and Bax, 2001; Delaglio et al., 2000; Tian et al., 2001).

The idea of correlating unassigned experimentally
measured RDCs with bond vector orientations from
a known structure was first proposed by Al-Hashimi
and Patel (2002) and subsequently demonstrated in Al-
Hashimi et al. (2002) who considered permutations of
assignments for RNA, and (Hus et al., 2002) who as-
signed a protein from a known structure using bipartite
matching. Our algorithm builds on these works and of-
fers some improvements in terms of isotopic labelling,
spectrometer time, accuracy and computational com-
plexity. Like Hus et al. (2002), we call optimal
bipartite matching as a subroutine, but within an Ex-
pectation/Maximization framework which offers some
benefits, which we describe below. Previous methods
require '3C-labelling and RDCs from many different
internuclear vectors (for example, '3C’-1ON, 13C’-HN,
Beege, etc.). Our method addresses the same prob-
lem, but uses a different algorithm and requires only
amide bond vector RDCs, no triple-resonance experi-
ments, and no 13C-labelling. Moreover, our algorithm
is more efficient. The combinatorial complexity of the
assignment problem is a function of the number n of
residues (or bases in a nucleic acid) to be assigned,
and, if a rotation search is required, the resolution
k* of a rotation-space grid over SO(3). The time-
complexity of the RNA-assignment method, named
CAP, proposed in Al-Hashimi et al. (2002) grows ex-
ponentially with . In particular, CAP performs an ex-
haustive search over all permutations, making it diffi-
cult to scale up to larger RNAs. The method presented
in Hus et al. (2002) runs in time O (In3), where O (n?)
is the complexity of bipartite matching (Kuhn, 1955)



and 7 is the number of times that the bipartite match-
ing algorithm is called. / may be bounded by O (k3),
the size of the discrete grid search for the principal
order frame over SO (3) (using 3 Euler angles). Here,
k is the resolution of the grid. Thus, the full time-
complexity of the algorithm presented in Hus et al.
(2002) is O (k3n3). The method presented in (Lang-
mead et al., 2003; Langmead and Donald, 2003) also
performs a discrete grid search for the principal order
frame over SO (3), but uses a more efficient algorithm
with time-complexity O (nk>). Once the principle or-
der frame has been computed, resonance assignments
are made in time O (rn3). Thus, the total running time
of the method presented in (Langmead et al., 2003) is
O (nk3 + n3). (Zweckstetter, 2003) has recently repor-
ted a technique for estimating alignment tensors (but
not assignments) using permutations of assignments
on a subset of the residues identified using either se-
lective labelling or Cy and Cp chemical shifts. If m
residues can be identified a priori (using, e.g., se-
lective labelling) as being a unique amino acid type,
then (Zweckstetter, 2003) provides an O (nm®) tensor
estimation algorithm that searches over the possible
assignment permutations for the m RDCs.

The algorithm presented in the current paper re-
quires neither a search over assignment permutations,
nor a rotation search over SO (3). Rather, the tech-
nique of Expectation/Maximization (EM) (Dempster
et al.,, 1977) is used to correlate the chemical shifts
of the HN-1SN HSQC resonance peaks with the struc-
tural model. In practice, the application of EM on
the chemical shift data is sufficient to uniquely as-
sign a small number of resonance peaks. In particular,
EM is able to assign a sufficient number of peaks for
direct determination of the alignment tensor S. NVR
eliminates the rotation grid-search over SO(3), and
hence any complexity dependency on a grid or its res-
olution k, running in O(n?) time, scaling easily to
proteins in the middle NMR size range (n = 56 to 129
residues). Moreover, our algorithm elegantly handles
missing data (both resonances and RDCs). We note
that NVR both adopts a ‘best-first’ strategy and uses
structural homology to make assignments; best-first
and homology-based strategies for disambiguating as-
signments are well-established techniques (e.g., Hoch
et al., 1990; Redfield et al., 1983).

From a computational standpoint, NVR adopts a
minimalist approach (Bailey-Kellogg et al., 2000),
demonstrating the large amount of information avail-
able in a few key spectra. By eliminating the need
for triple resonance experiments, NVR saves spec-
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trometer time. NVR processes unassigned HN-N
HSQC, HN-ISN RDCs (in two media), amide ex-
change data, and 3D ISN-NOESY spectra, all of which
can be acquired in about one day, when the NMR
spectrometer is equipped with a cryoprobe. There
are two classes of constraints used by our algorithm:
geometric and probabilistic. The HN-N RDC, H-D
exchange and '>’N-NOESY each provide independent
geometric constraints on assignment. A sparse number
of dnns are extracted from the unassigned NOESY
after the diagonal peaks of the NOESY are cross-
referenced to the peaks in the HSQC. These dnns
provide distance restraints for assignments. In gen-
eral, there are only a small number of unambiguous
dnns that can be obtained from an unassigned HN-HN
NOESY. The amide exchange information probab-
ilistically identifies the peaks in the HSQC corres-
ponding to non hydrogen-bonded, solvent-accessible
backbone amide protons. RDC’s provide probabilistic
constraints on each backbone amide-bond vector’s ori-
entation in the principle order frame. Finally, chemical
shift prediction is employed to compute a probabilistic
constraint on assignment. NVR exploits the geomet-
ric and probabilistic constraints by combining them
within the Expectation/Maximization framework.

NVR is demonstrated on NMR data from a 76-
residue protein, human ubiquitin, matched to four
structures determined either by x-ray crystallography
or by different NMR experiments (without RDCs, and
using different NOESY data sets than that processed
by NVR), achieving an average assignment accuracy
of over 99%. In other words, we did not fit the data
to a model determined or refined by that same data.
Instead, we tested NVR using structural models that
were derived using either (a) different techniques (x-
ray crystallography) or (b) different NMR data. The
feasibility of NVR for larger and different proteins is
explored using different combinations of real and sim-
ulated NMR data for hen lysozyme (129 residues) and
streptococcal protein G (56 residues).

Results and discussion

The experimental inputs to NVR are detailed in
Table 1. The method is divided into two phases, Tensor
Determination and Resonance Assignment (Figure 1).
In the first phase, chemical shift predictions, dnns, and
amide exchange rates are used to make a small num-
ber of assignments using Expectation/Maximization
(EM). Specifically, this phase attempts to assign at
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Nuclear Vector Replacement

Tensor Determination O(n?)

Resonance Assignment O(n®)

=

Make Most
Probable A_sgignments

Update Update
Tensors Probabilities

Input: Model, RDCs, H/D,
NOEs, HSQC, Chemical Shifts

Input: Model, RDCs, NOEs,
HSQC, Chemical Shifts

Figure 1. Nuclear Vector Replacement.

least 5 peaks for the purpose of determining the
alignment tensors directly (Losonczi et al., 1999).
The tensors are used to convert RDCs into probabil-
istic constraints. Algorithmically, the only difference
between phases 1 and 2 is that phase 1 does not
use RDCs (because the tensors have not yet been
determined).

The molecular structure of human ubiquitin has
been investigated extensively. A variety of data
have been published including resonance assignments
(Weber et al., 1987; Schneider et al., 1992), backbone
amide residual dipolar couplings recorded in two sep-
arate liquid crystals (bicelle and phage) (Cornilescu
et al., 1998), amide-exchange rates (Cornilescu et al.,
1998), N-HSQC and N-HSQC NOESY spec-
tra (Harris, 2002), and several independent high-
resolution structures solved by both x-ray crystallo-
graphy (Ramage et al., 1994; Vijay-Kumar et al.,
1987) and NMR (Babu et al., 2001; Johnson et al.,
1999). In 1998, the Bax lab published a new NMR
structure for ubiquitin, (PDB Id: 1D3Z) (Cornilescu
et al,, 1998). Unlike previous ubiquitin structures,
1D3Z was refined using dipolar couplings. Table
2 summarizes the differences in tertiary structures
between 1D3Z and four alternative high-resolution
structures (PDB Ids: 1G6J, 1UBI, 1UBQ, 1UD7)
of human ubiquitin, none of which have been re-
fined using dipolar couplings. We report both all-atom
and backbone RMSDs because while NVR processes
atomic coordinates from backbone atoms, the two
programs used for chemical shift prediction (SHIFTS
and SHIFTX) both require all-atoms and are there-
fore affected by all-atom RMSD. 1G6J, 1UBI and
1UBQ have 100% sequence identity to 1D3Z. 1UD7
is mutant form of ubiquitin where 7 hydrophobic core

residues have been altered (I3V, V5L, 113V, L15V,
123F, V26F, L671). 1UD7 was chosen to test the effect-
iveness of NVR when the model is a close homolog of
the target protein. Our algorithm performs resonance
assignment by fitting experimentally recorded dipolar
couplings to bond vectors from structural models. We
ran four independent trials, one for each of 1G6J,
1UBI, 1UBQ and 1UD7. In each test, both sets of ex-
perimentally recorded backbone amide dipolar coup-
lings (Cornilescu et al., 1998) for human ubiquitin
were fit to the amide bond vectors of the selected
model. N-HSQC and 'N-HSQC NOESY spec-
tra (Harris, 2002) were processed to extract sparse,
unassigned dnNs.

In addition to the trials on ubiquitin, NVR was
applied to two additional proteins, the 56-residue
streptococcal protein G (SPG) and the 129-residue
hen lysozyme. For both proteins, there exist published
chemical shifts deposited into BMRB (Seavey et al.,
1991), amide-bond RDC data (Kuszewski et al., 1999;
Schwalbe et al., 2001) and RDC-refined structures
(PDB 1d: 3GB1 (Kuszewski et al., 1999)), (PDB Id:
1E8L (Schwalbe et al., 2001)). Several high-resolution
alternative structures are also available (Tables 3 and
4). Using NVR, the experimentally recorded NH di-
polar couplings (Kuszewski et al., 1999; Schwalbe
et al., 2001) were fit to the amide bond vectors of
the selected model. A set of sparse, unassigned dnns
were simulated for SPG (using SPG’s chemical shifts
and the PDB restraint file (Kuszewski et al., 1999)
of NOEs for 3GB1) and lysozyme (using Lysozyme’s
chemical shifts and the PDB restraint file (Schwalbe
et al., 2001) of NOEs for 1E8L).



Table 1. NVR experiment suite

Experiment/data Information Role in NVR
content
HN-15N HSQC HN,15N Chemical shifts Backbone resonances,

HN-ISN RDC (in 2 media)
H-D exchange HSQC
HN-15N HSQC-NOESY

Backbone structure

Restraints on amide

bond vector orientation
Identifies solvent exposed
amide protons

Distance restraints
between spin systems
Tertiary structure

cross-referencing NOESY
Tensor determination,
resonance assignment
Tensor determination

Tensor determination,
resonance assignment
Tensor determination,
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Chemical shift
predictions

Restraints on

assignment

resonance assignment,
chemical shift
prediction

Tensor determination,
Resonance assignment

Expectation/maximization

We outline in this section the EM algorithm, a vari-
ation of which is used in both the first and second
phases of NVR. Details of the algorithm, and its im-
plementation are presented in the Methods section.
EM has been described previously (Dempster et al.,
1977). EM is a statistical method for computing the
maximum likelihood estimates of parameters for a
generative model. EM has been a popular technique
in a number of different fields, including machine
learning and computer vision. It has been applied to
bipartite matching problems in computer vision (Cross
and Hancock, 1998). In the EM framework there are
both observed and hidden (i.e., unobserved) random
variables. In the context of resonance assignment,
the observed variables are the chemical shifts, dnns,
amide exchange rates, RDCs, and the 3D structure
of the target protein. Let X be the set of observed
variables.

The hidden variables Y = Yg U Yg are the true
(i.e., correct) resonance assignments Y, and Yg, the
correct, or ‘true’ alignment tensors. Of course, the
values of the hidden variables are unknown. Specific-
ally, Y¢ is the set of edge weights of a bipartite graph,
G = {K,R,K x R}, where K is the set of peaks in
the HSQC and R is the set of residues in the protein.
The weights Y¢ represent correct assignments, there-
fore encode a perfect matching in G. Hence, for each
peak k € K (respectively, residue r € R), exactly
one edge weight from k (respectively r) is 1 and the

rest are (. The probabilities on all variables in Y are
parameterized by the ‘model’, which is the set ® of all
assignments made so far by the algorithm. Initially, ®
is empty. As EM makes more assignments, ® grows,
and both the probabilities on the edge weights Y and
the probabilities on the alignment tensor values Yg will
change. The goal of the EM algorithm is to estimate
Y accurately to discover the correct edge weights Y,
thereby computing the correct assignments. The EM
algorithm has two steps; the Expectation (E) step and
the Maximization (M) step. The E step computes the
expectation

EOUO'|0) = E(logP(X,Y|®U®)). 2)

Here, ®’ is a non-empty set of candidate new assign-
ments that is disjoint from ®. The M step computes
the maximum likelihood new assignments ©*,

©* = argmax E£(© U @'|0). 3)
@/

Then the master list of assignments is updated, ® <«
® U ®*. The alignment tensors are re-computed at
the end of each iteration, using all the assignments in
®. Thus, the tensor estimates are continually refined
during the run of the algorithm. The algorithm termin-
ates when each peak has been assigned. Care must be
taken to implement the probabilistic EM framework
efficiently. The details of how the E and M steps are
implemented are presented in the Methods section.
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Table 2. Human ubiquitin. The 4 structures of human ubiquitin used in the 4 separate trials of NVR

PDB ID Exp. method Comparison to 1D3Z
Sequence  All-atom  Backbone
identity RMSD RMSD
1G6J (Babu et al., 2001) NMR 100% 24 A 20A
1UBI (Ramage et al., 1994) X-ray (1.8 A) 100% 13A 0.6 A
1UBQ (Vijay-Kumar et al., 1987)  X-ray (1.8 A) 100% 14A 0.6 A
1UD7 (Johnson et al., 1999) NMR 90% 25A 23A

Table 3. Streptococcal protein G (SPG). The 3 structures of SPG used in the 3

separate trials of NVR

PDB ID

Exp. method

Comparison to 3GB1
All-atom  Backbone
RMSD RMSD

1GB1 (Gronenborn et al., 1991) NMR 13A 1.0A
2GB1 (Gronenborn et al., 1991) NMR 13A 1.0A
PGB (Gallagher et al., 1994) X-ray (1.92 A) 12A 0.6 A

Missing data

The EM algorithm affords an elegant and intuitive
means for handling missing data. Table 5 summarizes
the data processed in our 20 experiments on 3 pro-
teins. In theory, the HSQC spectrum should contain
one peak per residue in the protein (except prolines,
and the N-terminus). In reality, some peaks may be
‘missing’ from the spectrum. For example, the ubi-
quitin HSQC data processed by NVR lacks peaks for
Glu24 and Gly53. Furthermore, it is not always pos-
sible to record two RDCs for each backbone amide
group. The ubiquitin RDC data processed by NVR
lacks RDCs for residues Thr9, Glu24, Gly53, Leu73,
Arg74, Gly75, and Gly76 in one medium, and for
residues Thr9, Glu24, Gly53, Arg72, Leu73, Arg74,
Gly75, and Gly76 in the other.! Our algorithm pro-
cessed the data as-is and handles missing data directly.
Missing data is handled in NVR with unbiased estim-
ates. For example, in the ubiquitin data set, it is clear
that two peaks are missing from the HSQC because
we expect to see 72 peaks (76 residues — 3 prolines
— N-terminus = 72), and only 70 peaks are present.
In this case, the algorithm constructs and includes 2
‘dummy’ peaks that are interpreted as follows. Each
dummy peak is assigned a uniform probability (P =
1/72) to match all 72 expected residues when com-
puting assignment probabilities using chemical shift

data. That is, an unbiased (uniform) probability distri-
bution is used. Similarly, if an RDC is missing in one
or both media an unbiased probability distribution is
used when computing assignment probabilities using
RDCs.

Tensor determination (phase 1)

The experimentally determined RDC’s cannot be in-
terpreted as probabilistic constraints on assignment
prior to the determination of the alignment tensor S.
S has five degrees of freedom. Therefore, at least
five resonance assignments are needed to compute S
directly. Consequently, the purpose of the first phase
is to assign at least five peaks using the geometric
and probabilistic constraints contained in the chemical
shifts, dnns, and amide exchange rates. The details
of how the chemical shifts, dyns and amide exchange
rates are converted into constraints on assignment is
described in the Methods section. The EM algorithm
is used to assign a small number of peaks. In all of
our 20 experiments, no more than 2 iterations of the
EM algorithm on the chemical shift data, dnns and
amide exchange rates were needed to obtain five as-
signments. Alignment tensors for both media are then
computed directly by SVD (Losonczi et al.,, 1999).
The computational complexity of each iteration of the
EM algorithm is O (n?) time (see Methods). During



Table 4. Hen lysozyme. The 13 structures of hen lysozyme used in the 13 separate trials

of NVR
PDB ID Exp. method Comparison to 1E8L
All-atom  Backbone
RMSD RMSD
193L (Vaney et al., 1996) X-ray (1.3 A) 21A 154
1AKI (Artymiuk et al., 1982) X-ray (1.5 A) 21A 154
1AZF (Lim et al., 1998) X-ray (1.8 A) 21A 15A
I1BGI (Oki et al., 1999) X-ray (1.7 A) 21A 154
1H87 (Girard et al., 2001) X-ray (1.7 A) 21A 154
1LSC (Kurinov and Harrison, 1995)  X-ray (1.7 A) 22A 1.6 A
ILSE (Kurinov and Harrison, 1995)  X-ray (1.7 A) 22A 15A
1LYZ (Diamond, 1974) X-ray (2.0 A) 21A 154
2LYZ (Diamond, 1974) X-ray (2.0 A) 21A 15A
3LYZ (Diamond, 1974) X-ray (2.0 A) 2.1A 15A
4LYZ (Diamond, 1974) X-ray (2.0 A) 21A 154
5LYZ (Diamond, 1974) X-ray (2.0 A) 2.1A 15A
6LYZ (Diamond, 1974) X-ray (2.0 A) 2.1A 15A

Table 5. Missing data. The data processed on our experiments contained both missing peaks and missing RDCs.
Column 2 indicates the number of HSQC peaks contained in our test data. Column 3 indicates the number of
missing HSQC peaks (number of expected peaks — number of observed peaks). Columns 4-5 indicates the
number of RDCs obtained in media 1 and 2. Columns 6-7 indicates the number of missing RDCs in media 1
and 2. The NVR algorithm processed all data as-is, and handles missing data

Protein HSQC peaks RDCs
Observed  ‘Missing’ #, (%) Observed ‘Missing’ #, (%)
Medium 1~ Medium 2 Medium 1~ Medium 2
Ubiquitin 70 2, (3%) 65 64 7 (10%) 8, (11%)
SPG 55 0, (0%) 48 46 7 (13%) 9, (16%)
Lysozyme 126 0, (0%) 107 102 19 (15%) 24, (19%)

the first phase, the EM algorithm is called a constant
number of times. Thus, the cost of the first phase is
0 (n?).

Resonance assignment (phase 2)

Having determined the alignment tensors in the first
phase, the RDCs are converted into constraints on
assignment. Briefly, the amide bond vectors from
the model are used to back-compute a set of RDCs
using Equation 1. The difference between each back-
computed RDC and each experimentally recorded
RDC is converted into a probability on assignment.
This conversion of RDCs into probabilities is de-
scribed in detail in the Methods section. The EM
algorithm is used to iteratively assign the remaining
peaks. At least one assignment is made per itera-
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tion. Therefore, the second phase terminates in O (n)
steps. Each step takes O (n?) time, thus the computa-
tional complexity of the second phase, and therefore
the entire algorithm, is O (n). In practice, multiple
peaks are assigned on each iteration and the algorithm
quickly converges to a solution. In our experiments, no
more than 10 iterations were ever needed to assign the
HSQC spectrum, and the majority required 5 or fewer.
Run-times ranged from 8 seconds for the smallest pro-
tein (SPG) to 4 min for the largest protein (lysozyme,
129 residues) on a Pentium 4-class workstation.

Accuracy

NVR achieves 100% accuracy in assigning the back-
bone peaks of the HN-PN HSQC spectrum using each
of the four ubiquitin models. In the ubiquitin data,
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Table 6. Backbone amide resonance assignment ac-
curacy. Accuracies report the percentage of cor-
rectly-assigned backbone HSQC peaks. The 96% accur-
acy for 2GB1 reflects a single incorrect assignment

PDB ID Accuracy
(A) Ubiquitin

1G6J (Babu et al., 2001) 100%
1UBI (Ramage et al., 1994) 100%
1UBQ (Vijay-Kumar et al., 1987) 100%
1UD7 (Johnson et al., 1999) 100%
(B) SPG

1GB1 (Gronenborn et al., 1991) 100%
2GB1 (Groenenborn et al., 1991) 96%
1PGB (Gallagher et al., 1994) 100%

Table 7. Backbone amide resonance assignment accuracy:

Lysozyme
PDB ID Accuracy
193L (Vaney et al., 1996) 100%
1AKI (Artymiuk et al., 1982) 100%
1AZF (Lim et al., 1998) 100%
1BGI (Oki et al., 1999) 100%
1H87 (Girard et al., 2001) 100%
1LSC (Kurinov and Harrison, 1995) 100%
1LSE (Kurinov and Harrison, 1995) 100%
1ILYZ (Diamond, 1974) 100%
2LYZ (Diamond, 1974) 100%
3LYZ (Diamond, 1974) 100%
4LYZ (Diamond, 1974) 100%
SLYZ (Diamond, 1974) 100%
6LYZ (Diamond, 1974) 100%

Glu24 and Gly53 had missing HSQC peaks as well as
missing RDCs in both media. In this case, NVR dis-
covers and reports that residues Glu24 and Gly53 have
missing peaks. NVR performed perfectly on 1UD7, a
mutant of ubiquitin. This suggests that NVR might be
extended to use homologous structures. The average
accuracies on lysozyme and streptococcal protein G
were 100% and 99%, respectively. NVR achieves con-
sistently high accuracies, suggesting NVR is robust
with respect to choice of model. Even residues that
had fewer than 2 RDCs, but had chemical shifts were
always assigned correctly. That is, the chemical shifts
alone, or the chemical shifts and 1 RDC gave enough
constraint to assign the peak.

The single assignment error made on the strepto-
coccal protein G model 2GB1 is easily explainable.
Residues Val29 and Phe30 were incorrectly swapped
in the final iteration of the algorithm, due to dif-
ferences between the observed and back-calculated
RDCs. The observed dipolar couplings for these two
residues were an average of 5.2 Hz different from their
expected values in both media. By making the incor-
rect assignment the NVR method reduced the apparent
discrepancy to an average of 3.8 Hz.

Once the final set of assignments has been com-
puted, the (now) assigned RDCs can be used to refine
the structure of the model. This refined model can then
be compared to the published RDC-refined structures
of the 3 test proteins (1D3Z, 3GB1, 1E8L). If A is
the model used by NVR, A’ is the model obtained by
refining A using the RDCs assigned by NVR, and B
is the published RDC-refined structure, then ideally,
RMSD(A’, B) < RMSD(A, B), where RMSD(X, Y) re-
turns the root-mean-squared distance between two
models. Using an earlier version of the NVR algorithm
(Langmead et al., 2003) and a Monte-Carlo algorithm
for finding a (new) conformation of the model’s ¢
and { backbone angles that best matches the observed
RDCs, we have previously reported up to an 11%
reduction in (backbone) RMSD. This illustrates the
potential application to structural genomics, in which
NVR could be used to assign and compute new struc-
tures based on homologous models. We are presently
incorporating into NVR, a more advanced method for
refining structures using RDCs (Wang and Donald,
2004).

Progression of assignments

Table 8 reports, for each model, the assignments made
after the end of phase 1. It is these assignments that are
used to construct the initial tensor estimates for phase
2. The most common amino acid type to be assigned
during phase 1 is Glycine. This is perhaps expected
due to Glycine’s characteristic N shift. Among mod-
els for a given protein, the residues assigned during
phase 1 are fairly consistent, although there is variety.
Note that at the end of phase 1, more than 5 peaks
have been assigned for most models. This is consist-
ent with the nature of our algorithm (see Methods);
on a given iteration, the algorithm makes all unam-
biguous assignments. Furthermore, if a given peak
is assigned, but no RDC has been recorded for that
peak, the algorithm stays in phase 1 until 5 peaks with
RDCs in both media have been assigned. Therefore,



Table 8. Phase 1 assignments. This table lists the assignments made by the end of phase 1 for each
model. These assignments are used to construct the initial alignment tensors for phase 2. The residue
numbers in italics had either 0 or 1 RDC

Protein Model  First assignments (residue #)
Ubiquitin 1G6J V5,113,520,136,A46
1UBI $20,D21,T22,K33,G35,136,A46
1UBQ  113,S20,D21,T22,K33,G35,136,A46,G47
1UD7  S20,T22,K33,G35,136,A46,Y59
SPG 1GB1 K4,N8,E25,K31,Q32,Y33,D36,D46,D47,A48,T49,K50,T51,F52
1PGB  K4,16,T11,G14,V21,E25,V29,Y33,G38,G41,D46,T49,K50,T51,F52
2GB1 N8,E25,Y33,A34,D036,G38,D46,D47,A48,T49,K50,T51,F52
Lysozyme  193L G4,H15,G16,G22,G26,S36,F38,N39,T40,N44
1AKI G4,G16,G26,536,F38,N39,T40,N44,R45,D66
1AZF  G4,G16,G26,S36,F38,N39,T40,R45,D66,178
1BGI G4,H15,G16,G22,G26,S36,F38,T40,A42,D66
1H8C G4,M12,H15,G16,G22,G26,S36,F38,N39,T40,Q41,A42,N44,Y53,G54,D66
1LSC G4,H15,G16,G22,G26,S36,F38,N39,T40,Q41,N44,D66,D119
1LSE G4,G16,G26,S36,F38,N39,T40,N44,D66
1LYZ G4,H15,G26,T40,N44,D66
2LYZ G4,G26,V29,T40,D66
3LYZ G16,G26,V29,C30,F38
41YZ G4,H15,G16,G22,G26,S36,F38,N39,T40,D66,178
5LYZ G4,H15,G16,G22,G26,S36,F38,N39,T40,D66,178
6LYZ G4,G16,G26,T40,D66
—
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Figure 2. Evolution of probabilities: 1G6J: The evolution of each peak’s assignment probability to the residue it is ultimately assigned to.
Iteration number refers to the number of iterations in Phase 2 of the algorithm.
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Figure 3. Evolution of residues 23-34: 1G6J: The evolution of residues 23—43 (ubiquitin’s main a-helix) assignment probabilities.

it is possible for more than 5 assignments to be made
during phase 1. The tensors constructed using these
assignments are, of course, approximations to the true
alignment tensors. However, during phase 2, the align-
ment tensors are refined on each iteration as more and
more assignments are made.

Figure 2 depicts the evolution of the probability
associated with the residue ultimately assigned a given
peak for the Ubiquitin model 1G6J. The figure begins
with the first iteration of phase 2 and ends at iteration
6, when all peaks have been assigned. Note that small
groups of sequential residues tend to co-evolve in
similar fashion. Figure 3 plots the individual probab-
ilities of each residue in the main a-helix in Ubiquitin
(residues 23-34). Figure 4 plots the evolution of the
average probability, over all residues.

Table 9 lists, for each peak in Ubiquitin’s HSQC,
the iteration at which that peak was assigned, and the
probability of that assignment at the time the assign-
ment was made. The minimum and maximum number
of assignments on a given iteration are 1 (iteration 2)
and 24 (iteration 3). Thus, a single assignment can
dramatically reduce the overall uncertainty.

Stability analysis

We have demonstrated that NVR performs well on
real NMR data from a variety of different proteins.
It is useful, however, to establish how an algorithm’s
performance degrades as the quality and quantity of
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Figure 4. Evolution of average probability: 1G6J

experimental data decreases; this is especially im-
portant for sparse-data algorithms, like NVR. In this
section, we discuss a series of controlled experiments
to probe the stability of our algorithm under various
perturbations of the data from our three test proteins.

RDC:s from a single aligning medium

Recording RDCs from two separate aligning media is
a standard technique for addressing the degeneracies
in RDCs. However, it is of interest to determine how
well NVR performs when RDCs from a single me-
dium alone are used. To test this, we ran NVR on each
of the 20 models using only one set of RDCs. The tests
were exhaustive; that is, for each of the 20 models,
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Table 9. First assignments: 1G6J. For each residue, this table lists when that residue
was assigned to a peak. ‘Phase 1’ means that the residue was assigned during the first
phase of NVR. Otherwise, the number refers to the iteration number in phase 2. Note
that while human ubiquitin has 76 residues, this table has 70 rows. The missing rows
correspond to the N-terminus, 3 prolines (residues 19,37,38), and residues 24 and 53,
for which no peaks appear in the I5N-HSQC of ubiquitin

Residue  Iteration  Probability (%) Residue  Iteration  Probability (%)
Q2 5 5 Q41 4 18
13 5 49 R42 2 99
F4 5 22 L43 3 66
V5 Phase 1 32 144 3 3
K6 5 14 F45 4 13
T7 5 68 A46 Phase 1 99
L8 5 28 G47 3 67
T9 4 36 K48 4 12
G10 5 63 Q49 4 40
K11 4 73 L50 4 2
TI12 5 11 ES1 5 3
113 Phase 1 56 D52 5

T14 4 5 R54 4 15
L15 4 26 T55 4 52
El6 5 31 L56 3 1
V17 4 1 S57 5 99
ElI8 5 7 D58 3 56
S20 Phase 1 99 Y59 3 51
D21 3 18 N60 4 97
T22 3 77 161 3 21
123 4 56 Q62 4 12
N25 3 1 K63 3 73
V26 3 67 E64 3 11
K27 3 23 S65 5 2
A28 3 42 T66 5 4
K29 3 19 L67 3 91
130 3 34 H68 1 26
Q31 4 1 L69 3 16
D32 3 6 V70 1 24
K33 4 6 L71 5 57
E34 4 65 R72 4 2
G35 3 87 L73 3 2
136 Phase 1 99 R74 3 1
D39 4 27 G75 3 5
Q40 4 64 G76 4 2

we ran NVR using the first aligning medium alone,
and then with the second aligning medium alone, for
a total of 40 separate experiments. The mean accuracy
over these 40 trials was 92%. The standard deviation
was 13% and the median accuracy was 97%. Thus, the
overall drop in average accuracy is modest. In twelve
instances (Ubiquitin model: 1UBQ, medium 2; SPG

models: 2GB1, medium 1; 1PGB, medium 1; 1PGB,
medium 2; Lysozyme models: 193L, medium 1; 193L,
medium 2; 1AKI, medium 1; 1H8C, medium 2; 1LSC,
medium 1; 1LSC, medium 2; 2LYZ, medium 2; 6LYZ,
medium 1) the algorithm achieves 100% accuracy on
a single medium. It is interesting that the SPG model
2GB1 actually does slightly better using one medium,
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and not two. However, in one case (Ubiquitin model
1G6J, first medium), the accuracy dropped to 31%.
We conclude that two sets of RDCs are important for
overall robustness.

Reducing the number of HSQC peaks

As shown in Table 5, an HSQC may lack peaks
for one or more residues. In our next set of exper-
iments, we varied the number of ‘missing” HSQC
peaks. We ran 100 trials on each of the 20 models.
On each trial, we randomly threw away x% of the
peaks in the HSQC. These experiments were run for
x € {5, 10, 20, 30, 40, 50}. Thus, we ran 12,000 trials
(20 proteins x 100 random selections x 6 percent-
ages). Of course, when an HSQC peak is discarded,
the associated RDCs, amide exchange rates, and any
relevant dnN’s are discarded as well. As shown in
Table 10, accuracies decrease sharply when HSQC
peaks are discarded. When as few as 5% of the peaks
are missing, the average accuracy drops to 81%. Due
to the poor performance on as few as 5% missing
HSQC peaks, we ran follow-up experiments wherein
we removed x HSQC peaks, randomly. These experi-
ments were run for x € {1, 2, 3, 4, 5}. That is, we ran
an additional 10,000 trials (20 proteins x 100 random
selections x 5 cases). As shown in Table 11, the aver-
age accuracy drops below 90% when 3 HSQC peaks
are missing.

Reducing the number of unambiguous dnN'’s

NVR operates on a sparse set of unambiguous unas-
signed dnn’s. Unambiguous is defined as a NOESY
cross-peak whose two 'H and one !N chemical shifts
can be cross-referenced to a unique pair of peaks in
the HSQC. The notion of unambiguous dnn’s is well
established (e.g., Grishaev and Llinas, 2002), and
we precisely define the term in the Methods section.
Whether a given dnn is unambiguous depends on the
local density of peaks in the spectrum, which can-
not be controlled. Note that, in general, it is unlikely
that any given dnn is mislabelled; that is, it is un-
likely we will mistakenly attribute a given dyN to an
incorrect pair of peaks in the HSQC. This is simply
because, by definition, we only use a dnn when there
are only two peaks in the HSQC that could explain
the data. It is reasonable, however, to consider the
effects of reducing the number of unambiguous dnN’s
available to NVR. To test this, we ran 100 trials on
each of the 20 models. On each trial, we randomly
threw away x % of the dnn’s. These experiments were

Table 10. Stability analysis: Reducing the number of HSQC
peaks. Assignment accuracies, over 12,000 trials, when
x € {5, 10, 20, 30, 40, 50} percent of randomly selected HSQC
peaks are discarded

Percentage of discarded HSQC peaks
Accuracy 5 10 20 30 40 50

Mean 81% T1% 53% 38% 24% 13%
St. dev. 20%  21% 21% 20% 16% 12%
Median 8% T15% 53% 35% 2% 17%

Table 11. Stability analysis: Reducing the number of
HSQC peaks, part 2. Assignment accuracies, over
10,000 trials, when x € {1, 2, 3, 4, 5} randomly selected
HSQC peaks are discarded

No. of discarded HSQC peaks

Accuracy 1 2 3 4 5
Mean 9% 93% 86% 83% 82%
St. dev. 9% 12% 20% 21% 20%

Median 100%  98% 94% 91% 89%

run for x € {10, 20, 30, 40, 50}. Thus, we ran 10,000
trials (20 proteins x 100 random selections x 5 per-
centages). As shown in Table 12, average accuracies
above 90% are still obtained when up to 20% of the
dnn’s are discarded. When 50% of the dnn’s are dis-
carded, NVR still achieves greater than 70% accuracy,
on average.

Corrupting dnN'’s

While it is very unlikely that an unambiguous
dnn might be mislabelled, we decided to test this
scenario. To test this, we ran 100 trials on each of
the 20 models. On each trial, we randomly misla-
belled x of the dnn’s. These experiments were run for

Table 12. Stability analysis: Reducing the number
of unambiguous dNN’s. Assignment accuracies, over
10,000 trials, when x € {10, 20, 30, 40, 50} percent of
randomly selected dNN’s are discarded

Percentage of discarded dnN’s
Accuracy 10 20 30 40 50

Mean 9% 91% 87% 81% 74%
St. dev. 14% 14% 16% 19% 20%
Median B% 97% 93% 81% 19%




Table 13. Stability analysis: Corrupting dNN’s. As-
signment accuracies, over 10,000 trials, when
x € {1,2,3,4,5} randomly selected unambiguous
dNN’s are mislabelled

No. of mislabelled dNN’s
Accuracy 1 2 3 4 5

Mean 0% 51% 45% 38% 30%
St. dev. 32% 30% 27% 28% 23%
Median 82% 46% 39% 29%  23%

x €{1,2,3,3,5}. Thus, we ran 10,000 trials (20 pro-
teins x 100 random selections x 5 cases). As shown in
Table 13, NVR is sensitive to mislabelled dnn’s; mean
accuracies drop to 70% when as few as one dnn is
mislabelled.

Reducing the number of slow-exchanging peaks

In our next set of experiments, we varied the number
of slow-exchanging peaks input to NVR. We ran 100
trials on each of the 20 models. On each trial, we ran-
domly mis-labelled x % of the slow-exchanging peaks
in the HSQC as being fast-exchanging. These experi-
ments were run for x € {10, 20, 30, 40, 50}. Thus, we
ran 10,000 trials (20 proteins x 100 random selections
x 5 percentages). Note that in NVR, the edge-weights
between slow-exchanging peaks and non-hydrogen
bonded surface residues are set to zero (see Methods);
by re-labelling a peak as being fast-exchanging, we
remove a constraint, but do not eliminate any cor-
rect assignments from consideration. In contrast, in
the next section, we consider the case where a peak
may be incorrectly identified as a slow-exchanging
peak, thereby disallowing a correct assignment from
consideration. As shown in Table 14, NVR is quite
robust to a reduced set of slow-exchanging peaks; ac-
curacies above 90% are reported when 50% of the
slow-exchanging peaks are discarded.

Corrupting the amide exchange data

Finally, we tested the effect of corrupted amide-
exchange data. We ran 100 trials on each of the 20
models. Recall that each peak in the HSQC is labelled
as either being a slow- or a fast-exchanging peak. On
each trial, we flipped the designation of x randomly
selected fast-exchanging HSQC peaks. These experi-
ments were run for x € {1, 2,3,4,5}. Thus, we ran
10,000 trials (20 proteins x 100 random selections
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Table 14. Stability analysis: Reducing the number of
slow-exchanging peaks. Assignment accuracies, over
10,000 trials, when x € {10, 20, 30, 40, 50} percent of ran-
domly selected slow-exchanging peaks are re-labelled as
fast-exchanging

Percentage of discarded
slow-exchanging peaks

Accuracy 10 20 30 40 50
Mean 95% 95% 94% 94%  93%
St. dev. 13% 12% 12% 11%  12%

Median 100%  100%  100% 100%  98%

Table 15. Stability analysis: Corrupted amide ex-
change data. Assignment accuracies, over 10,000 trials,
when x € {l,2,3,4,5} randomly selected peak’s
amide exchange data is corrupted (see text)

Number of corrupted
amide exchange rates
Accuracy 1 2 3 4 5

Mean 8% 19% 16% 67% 64%
St. dev. 22%  26% 30% 30% 30%
Median 9%6% 92% 92% 15% 10%

x 5 cases). As shown in Table 15, NVR is sensitive
to corrupted amide exchange data. While median ac-
curacies above 90% are observed for up to 3 corrupted
peaks, the mean accuracy falls to 85% when as few as
one fast-exchanging peak is (incorrectly) labelled as a
slow-exchanging peak. In contrast, in the previous sec-
tion we saw that when a slow-exchanging peak is (in-
correctly) labelled as being fast-exchanging, accuracy
remains high when up to 50% of the slow-exchanging
peaks are labelled as fast-exchanging. This behavior
is to be expected given the way NVR applies amide-
exchange rates: The edge-weights emanating from
those peaks designated as slow-exchanging and con-
nected to solvent-accessible, labile protons are set to
zero. We ran a follow-up experiment where these same
edge weights were set to a small value € > 0, rather
than zero. In this experiment, the mean accuracy was
improved to 93% (st. dev 11%, median 98%) when up
to 50% of the amide exchange data is corrupted.

The effects of simulating assignment errors in phase 1

The initial tensor estimates for phase 2 are determ-
ined by the assignments made in phase 1. The quality
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of these tensor estimates may be poor if any of the
assignments made in phase 1 are incorrect, or if the as-
signed substructure poorly matches the RDCs. A poor
fit between substructure and data may be caused either
by differences between the solution and the crystal
structure, or by internal dynamics. In this section we
describe the results of experiments where we simu-
late making a) incorrect assignments in phase 1, and
b) making assignments on substructures that poorly
match the RDC data.

To test the effects of incorrect assignments made
during phase 1, we ran 100 trials on each of the 20
models. On each trial, we made 5 randomly-selected
assignments, x of which were incorrect, in lieu of run-
ning phase 1; the algorithm then proceeds to phase
2. These experiments were run for x € {I,2,3}.
Thus, we ran 6,000 trials (20 proteins x 100 random
selections x 3 cases). NVR is very sensitive to in-
correct assignments made during phase 1; the mean
accuracies for x = 1, 2, and 3 were, 48%, 30%, and
23%, respectively.

To test the effects of making assignments during
phase 1 to substructures that poorly match the RDC
data, we ran 1 experiment on each of the 20 models.
For each model, we identified the five residues whose
RDCs most poorly matched the RDC data. These five
residues were chosen by first back-computing RDCs
from the model using the ‘correct’ alignment tensor.
By ‘correct’” we mean the tensor constructed from
the model using the SVD method and the correct as-
signments. Next, the five residues with the largest
combined difference (i.e., in both media) between the
experimental and back-computed values were identi-
fied. These five assignments were made manually in
lieu of running phase 1; the algorithm then proceeds to
phase 2. NVR is not very sensitive to the quality of the
initial tensor; the mean and median accuracy for these
20 experiments were 90% and 100%, respectively.

In summary, NVR is very sensitive to the accuracy
of the initial phase 1 assignments, but not as sensitive
to the quality of the initial tensor estimates. Given the
results of our experiments using corrupted dnn’s, the
sensitivity of NVR to inaccurate assignments is per-
haps not surprising. That is, when a mis-assigned peak
is involved in a dnn, it forces additional peaks to be
mis-assigned. In contrast, because NVR continues to
use all experimental data during phase 2, deficiencies
in the tensor estimates due to model error or dynamics
can be overcome. The integration of different lines of
evidence is the essence of the NVR method.

Given the sensitivity to establishing correct assign-
ments early, one could incorporate additional exper-
imental evidence to reduce the overall uncertainty in
the data. Selective isotopic labelling is an obvious pos-
sibility. Additionally, NVR might be adapted to use the
techniques of Grzesiek and Bax (1993) or Gemmecker
et al. (1993) to identify solvent-accessible protons.
This data would be complementary to the amide-
exchange data already used by NVR: Zero or e-edge
weights would be formed between peaks associated
with solvent-accessible protons and the non-solvent
accessible residues from the model.

It is reasonable to consider alternative means for
estimating alignment tensors, such that phase 1 might
be skipped entirely. For example, structure-based
tensor estimation methods (e.g., Zweckstetter and
Bax, 2000) and a technique reported by Zweckstet-
ter (2003), based on selective isotopic labelling, have
been reported. To test this scenario, we skipped phase
1 (making no assignments) and instead passed the cor-
rect alignment tensor to phase 2, and subsequently
assigned all the peaks. The mean and median accur-
acy for these experiments, over all 20 models, were
97% and 100%, respectively. This suggests that, in
the case where NVR were to make some incorrect
assignments, but the final tensor estimates were still
reasonably accurate, one could increase assignment
accuracies by a ‘bootstrapping’ procedure in which
phase 2 was re-run using the final tensor estimates
but discarding the assignments from the first run. To
test this, we ran 100 trials on each of the 20 models.
On each trial, we constructed tensors using the SVD
method on the model and a set of assignments, x%
of which were incorrect, in lieu of running phase 1;
after discarding the assignments, the algorithm then
proceeds to phase 2. These experiments were run for
x € {1,3,6,12, 25,50, 100}. Thus, we ran 14,000
trials (20 proteins x 100 random selections x 7 per-
centages). The bootstrapping procedure is very robust;
the mean accuracies for x = 1,3, 6, 12, 25, 50, and
100 were 97%, 97%, 98%, 98%, 98%, 98%, and 96%,
respectively. The median accuracies for all values of x
were all 100%.

These results again suggest that NVR is not very
sensitive to the quality of the initial tensor estimates,
because the additional lines of evidence (chemical
shift prediction, amide-exchange, dnN’s) can over-
come these inaccuracies. NVR’s voting algorithm (see
p. 135) to integrate different lines of evidence is really
just a means to increase a signal-to-noise ratio. Here
the signal is the computed likelihood of the assignment



between a peak and the (correct) residue. Ideally, this
probability would be 1. The noise is the uncertainty in
the data such that the probability mass is distributed
among multiple residues. Each line of evidence (i.e.,
experiment) has noise, but the noise tends to be ran-
dom and thus cancels when the lines of evidence are
combined. Conversely, the signals embedded in each
line of evidence tend to reinforce each other, resulting
in (relatively) unambiguous assignments. Hence, even
if the two initial tensor estimates are poor, it is unlikely
that they can conspire (by voting together) to force
an incorrect assignment. More generally, given NVR’s
voting scheme (p. 135), any pair of lines of evidence
is unlikely to outvote the majority.

Detecting incorrect assignments

It is reasonable to ask whether the difference between
experimentally-observed and back-computed RDCs
may be used to identify incorrect assignments. Un-
fortunately, the difference between experimentally ob-
served and back-computed RDCs can be quite large
due to dynamics, discrepancies between the idealized
physics and the conditions in solution, and model
error. In general, there may be no bound on the dis-
parity between a experimentally-observed and a back-
computed RDC. Thus, the difference between exper-
imentally observed and back-computed RDCs cannot
be used to used to identify any particular assignment
as incorrect. However, the difference between experi-
mentally observed and back-computed RDCs might be
useful to assess the overall correctness of an ensemble
of assignments. Recall that the alignment tensor for
a given medium can be computed via SVD from a
set of 5 or more assigned RDCs matched to a known
substructure. In theory, any set of five assigned RDCs
should yield the same tensor; in practice, noise and dy-
namics yield somewhat different tensors for different
subsets of assignments. Consider a set of assignments
for a set of n >> 5 peaks (and their associated RDCs).
We will denote as A, a set of assignments for n peaks
containing c¢ incorrect assignments. For example, the
set Ao is the set of correct assignments, and A» is a
set containing 2 erroneous assignments. At issue is
whether tensors induced by subsets of Ay are more
consistent (similar) than tensors induced by subsets of
A., when ¢ > 0. To test this hypothesis, we ran a
series of experiments. For each of the twenty models,
we constructed sets A.. Incorrect assignments were
chosen randomly. Next, we constructed two tensors,
one for each set of RDCs, for each A.. Let S.;;; be the
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tensor constructed using A, and RDCs from medium
m. Let Bf be a subset of A, such that |B§| = k, where
k > 5. Let S* be the tensor constructed using BX
using RDCs from medium m. We randomly selected
100 subsets of size k for each A, and for each subset
we then constructed two tensors, S’;’l, and Slg’z, one
for each medium.

We then computed the similarity between the all-
residue tensor S, and each subset tensor Sk, as
follows. Saupe matrices are completely specified by
their eigenvalues and eigenvectors. Following stand-
ard notation (Wedemeyer et al., 2002), we sort the
eigenvectors by eigenvalue. We then compare eigen-
values and eigenvectors of the same rank. To quantify
the similarity of the principal order frame (POF) of
the subset tensor S’;m to the POF of the all-residue
tensor S.,,, we use the method of Yan et al. (2003)
to compute a percentile that measures the fraction of
all tensor orientations that fall within the angular de-
viations of the subset tensor (SX,,) from the all-residue
tensor (S, ). Suppose we randomly and isotropically
rotate the subset tensor S’;m. We compute the probabil-
ity Py, that the eigenvectors of the randomly-oriented
tensor are simultaneously within the three angular er-
rors measured between the eigenvectors of S, and the
eigenvectors of Sfm. By integrating isotropically over
SO(3), we compute an upper bound on Pg, which
includes a 4-fold symmetry factor due to symmetry
of the dipolar operator.” Thus, for each of the twenty
models and a given pair of ¢ and k, we obtain 200
similarity measurements (100 x two media). Let Tf
be the set of these 4,000 (20 models x 200) meas-
urements. We will denote the average, maximum and
minimum of TX as pX, kX, and ¢, respectively. In
our experiments, ¢ € {0,2,4,8,16,32,n} and k €
{5,6,7,8,9,10, 11, 12, 13, 14, 15} and we computed
Tk, uk and ¢f for all combinations of ¢ and k.

As shown in Figure 5, average tensor consistency
(u’c‘ ) is inversely correlated with the number of incor-
rect assignments. That is, for any fixed k, if x > y,
then pLﬁ < u’;. The average tensor consistency in-
creases with k. This is to be expected; suppose that a
single peak p in subset BF is incorrectly assigned to a
residue whose backbone amide bond vector is oriented
in a different direction than the bond vector associ-
ated with the correct assignment. The SVD method
for computing alignment tensors finds the tensor that
minimizes the sum of the squares of the differences
between the experimentally observed RDCs and the
set of back-computed RDCs. That is, it is governed by
a quadratic error function. Conceptually, the incorrect
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Figure 5. Mean tensor consistency and incorrect assignments: Average tensor consistency, u’c‘, is inversely correlated with the number of
incorrect assignments, ¢, and positively correlated with the size of the subset, k, (see text for details).

assignment represents an outlier that the SVD method
is forced to fit. The larger an outlier p is, the more
Sk differs from S,,,. However, if we increase the size
of k, the effect that any single incorrect assignment,
p, has on S¥, decreases, and the consistency between
S.m and S’;m increases.

In contrast, as shown in Figure 6, minimum tensor
consistency (<p’j) is not a good indicator of the relat-
ive amount of incorrect assignments. This is also to
be expected; as argued above, an incorrect assignment
tends to generate an ‘incorrect’ tensor. Thus, if a given
randomly chosen subset has a significant number of
incorrect assignments, the tensor associated with that
subset will be inconsistent with S.,,. Perhaps more
important, (pl(j, the minimum tensor consistency value
observed when the subsets are drawn from Ag (the set
of correct assignments), can also be very low, even
for large k. As previously mentioned, it is not possible
to distinguish incorrect assignments from anomalous
RDCs or model error. Thus, it is not unexpected that
we observe low values of (pl(j. Maximum tensor con-
sistency (K’j) is also not a good indicator of the relative
number of incorrect assignments (data not shown). In
all of our experiments, regardless of the sizes of ¢ and
k, we always observed at least one pair, (S¢, S’;m),
whose consistency fell into the 100" percentile of ac-
curacy. That is, when randomly selecting subsets of
A, it is likely that at least one subset will yield a
tensor consistent with S, .

As we have seen, no simple threshold applied to

either (\015 or kX is sufficient to determine whether a

set of assignments, A, contains errors. Average tensor
consistency (u’;), on the other hand, is correlated with
the number of incorrect assignments. As seen in Fig-
ure 5, for any given value of k, a threshold can be
chosen that perfectly separates Ag from Az, A4, Asg,
A1g, A3p, and A,,. However, this threshold varies with
k. It is doubtful that the threshold might be chosen ana-
Iytically; the specific value of u’; almost certainly de-
pends on the structural homology between the model
and the target protein, which is unknown a priori.
However, the correlation between tensor consistency
and correctness of assignments does suggest a new
strategy for performing resonance assignment wherein
the goal is to maximize u’j. This is an interesting area
for future work.

Finally, it is worth considering the sensitivity of
u’g to the absolute number of errors. To test this, we
computed #-tests between Té‘ and Tck, for all £ and
all ¢ > 0. That is, we wish to determine for which
value of k do ué and pL’; become statistically signific-
antly different. Table 16 reports the p-values from a
one-tailed z-test at a significance level of 0.05. Statist-
ically significant differences between Té‘ and Tck , for
all £ and all ¢ > 4 are seen. That is, ulg is sensit-
ive to 4 or more incorrect assignments in subsets of
k = 5 and greater. Statistically significant differences
between Té‘ and Tf ,forall k > 6 and all ¢ > 4 are
seen. Thus, using subsets of size 6, or greater, one
could, in principle, distinguish between a correct set
of assignments and an incorrect one using tensor con-
sistency alone. Unfortunately, as previously argued,
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Figure 6. Minimum tensor consistency and incorrect assignments: Minimum tensor consistency, q)lf., is not correlated with the either number
of incorrect assignments, ¢, or with the size of the subset, k, (see text for details).

Table 16. Mean tensor consistency sensitivity. p-values, as
computed using a one-tailed 7-test, with a significance level
of 0.05, between Tok and TL].‘, for all k and all ¢ > 0O (see
text for definitions). Only one combination (¢ = 2,k = 5)
yields a statistically insignificant difference in the means of
the two populations

c
k2 4 8 16 32 n
5 027 41x105 0 0 0 0
6 88x1073 0 00 0 0
7 1.0x107% 0 00 0 0
8 20x107% 0 00 0 0
9  0.03 0 00 0 0
10 42x1075 0 00 0 0
11 20x100 0 00 0 0
12 25x1075 0 00 0 0
13 24x107° 0 00 0 0
4 0 0 00 0 0
15 28x1075 0 00 0 0

tensor consistency alone cannot be used to identify
which assignments are incorrect.

Discussion

It is reasonable, in principle, to cast the problem of res-
onance assignment of a known structure using RDCs,
into a combinatorial optimization framework (Hus
et al., 2002). Hence, initially, we attempted to treat

the problem as an optimal bipartite matching prob-
lem. NVR operates on bipartite graphs between peaks
and residues. The edge weights from each peak to all
residues form a probability distribution. The probabil-
ities are derived from 1) amide-exchange experiments,
2) dnns, 3) chemical shift predictions based on av-
erage chemical shifts from the BMRB (Seavey et al.,
1991), 4) chemical shift predictions made by the pro-
gram SHIFTS (Xu and Case, 2001), 5) chemical shift
predictions made by the program SHIFTX (Neal et al.,
2003), and 6-7) constraints from RDCs in two media.
As shown in Figure 7, maximum bipartite matching
(Kuhn, 1955) does not yield satisfactory accuracies
on various combinations of these graphs. No com-
bination achieves higher than 53% accuracy and the
mean accuracy is only 11%. In other words, neither
amide RDCs, nor any of the chemical shift prediction
methods provide enough constraint to yield accurate
assignments using maximum bipartite matching alone.
Of course, neither SHIFTX nor SHIFTS are intended to
perform resonance assignment directly. Briischweiler
and co-workers (Hus et al., 2002) have successfully
applied maximum bipartite matching to resonance as-
signment, but that technique requires RDCs from
several different bond types which, in turn, requires
13C-labelling of the protein and triple resonance ex-
periments. One of the initial goals of NVR was to
answer the question, are backbone amide RDCs and
dnns sufficient for performing resonance assignment.
Figure 7 does not imply that (Hus et al., 2002) per-
forms poorly. Rather, it implies that the EM method
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may be more effective than bipartite matching alone
on the different, and sparser set of experimental data
employed in NVR.

RDCs may exhibit both degeneracy, when two or
more residues have the same RDC, and aberrations,
when experimentally recorded residual dipolar coup-
lings deviate significantly from their predicted values.
RDC degeneracies arise due to the geometry of the
protein and the dipolar operator. Aberrant RDCs may
be the result of dynamics, discrepancies between the
idealized physics and the conditions in solution, and,
when the model structure is derived from crystallo-
graphy, crystal contacts and conformational differ-
ences between the protein in solution versus in the
crystal.

Chemical shifts, similarly, are also subject to de-
generacy (peak overlap) and aberrations, when a given
residue’s amide chemical shifts fall outside their ex-
pected range. However, as also observed in (Hus et al.,
2002), by combining RDCs and chemical shifts, both
degeneracy and aberrations may be partially over-
come. For example, in Figure 7, a maximum bipartite
matching on the joint probabilities of chemical shift
prediction and RDCs does better than chemical shift
prediction or RDCs alone.

The advantage of NVR over maximum bipartite
matching lies in its iterative nature. The algorithm
takes a conservative approach, making only likely as-
signments, given the current information. After mak-
ing these assignments, the edge weights between the
remaining unassigned peaks and residues are updated.
Suppose that, during the ith iteration of the algorithm,
peak k is assigned to residue r. The edge weight
between peak k and residue r is then set to 1, indic-
ating the certainty of that assignment. As previously
stated, the edge weights form a probability distribu-
tion. Accordingly, the edge weight between peak k
and any other residue is set to 0. Similarly, the weights
on the edges from any other peak to r are immedi-
ately set to 0. The (non-zero) edge weights from each
remaining unassigned peak are re-normalized prior to
the next iteration. Thus, a peak whose assignment may
be ambiguous in iteration i may become unambiguous
in iteration i + 1. The unassigned dnns play an es-
pecially important role in disambiguating competing
assignments (Figure 8).

Limitations

There are a number of limitations to our algorithm
worth noting. The first is that we have only tested
NVR on models with both high sequence and struc-
tural homology. Consequently, the present form of
the algorithm may be best applied to scenarios where
a crystal structure of the same protein is available,
as may be the case in a SAR by NMR study. Mod-
els with significantly less homology will likely have
somewhat different networks of hydrogen bonds and
NOEs, as well as different amide bond-vector orienta-
tions. The probabilistic framework in which RDCs are
interpreted will likely be robust to reasonable amounts
of variation. In contrast, the hard constraints employed
by NVR in the interpretation of amide-exchange rates
and dnN’s will likely force assignment errors in these
cases. In terms of differences in hydrogen bonding
patterns, NVR is not very sensitive to the total num-
ber of slow-exchanging peaks (as seen in Table 14).
The difficulty is when a peak which should be fast
exchanging (with respect to the model) is identified
as being slow-exchanging. Our followup experiment
(page 123) wherein we set the edge-weights between
slow-exchanging peaks and labile protons to a small
value € (instead of 0), performed well (median ac-
curacy 98%). Thus, a modified form of NVR might
adopt this approach. In terms of differences in NOE
networks, the majority of all dyn’s processed in our
experiments were sequential. Thus, little or no com-
pensation is required for low-homology models. Long
range dnN’s, in contrast, might be handled by using a
larger tolerance radius (see Methods section).

A more comprehensive analysis of the perform-
ance of the algorithm under varying amounts of ho-
mology (both structural and sequential) remains an
important goal. Computational modelling could be
used to construct a variety of alternative models having
strictly controlled amounts of homology. These mod-
els may inform, for example, the minimum amount of
homology required by NVR for a given set of experi-
mental data. NVR is perhaps best seen as a framework;
one instance of that framework is defined in Table 1.
NVR, could, however, be easily adapted to include
more, and different kinds of NMR data. Homology
studies might be used to define, for a given level of
homology, which experimental data are required.

Finally, NVR relies on the ability to make an initial
set of assignments using chemical shift predictions.
Clearly, the ability to do so is a function of which
amino acids comprise the protein and the peak density
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Figure 7. Maximum bipartite matching accuracy: Comparison of the accuracy of the Kuhn—Munkres maximum bipartite matching algorithm
on various combinations of the data processed by NVR. Column 1, BMRB, is a bipartite graph with edge weights computed using chemical
shift prediction based on statistics from the BMRB. Columns 2 and 3, SHIFTX and SHIFTS, are bipartite graphs with edge weights computed
using the chemical shift prediction programs SHIFTX and SHIFTS, respectively. Column 4, JOINT, CS, is a bipartite graph with edge weights
computed by taking the joint probability (Eq.(7)) over BMRB, SHIFTX and SHIFTS graphs. Column 5, RDC, is a bipartite graph with edge
weights computed by taking the joint probability of both sets of RDCs. Column 6, JOINT, ALL, is a bipartite graph with edge weights computed
by taking the joint probability over BMRB, SHIFTX, SHIFTS, and both sets of RDCs using the correct alignment tensors. Squares are the mean
accuracy over the 3 proteins and 20 test models. Vertical bars indicate the range of the maximum and minimum accuracies.

in various regions of the HSQC spectrum, neither of
which can be controlled. Should chemical shift predic-
tion incorrectly assign one or more peaks in phase 1,
the tensors constructed using these assignments would
be wrong, causing still more incorrect assignments to
be made. We are presently exploring the incorpora-
tion of data from an ’'N-HSQC-TOCSY to provide
more robust identification of amino acid type from
chemical shift data. A related issue is that the NVR
algorithm has no means for controlling which residues
are assigned during phase 1. In particular, it is possible
that the set of residues assigned during phase 1 may
correspond to a set of bond vectors which lack suf-
ficient independence to construct an accurate tensor.
We note, however, that during phase 2, chemical shift
predictions are also used, compensating for inadequa-
cies in the tensors. Moreover, the tensor estimates
are refined on every iteration, as more assignments
are made. Hence, if the bond vectors from the model
are reasonably independent, the algorithm is guaran-
teed to eventually construct a tensor using a set of
vectors such that the tensor is determined accurately.
Moreover, the algorithm could be modified such that
it exits phase 1 only when the independence condition
1s met.

Conclusion

We have described a fast, automated procedure for
high-throughput NMR resonance assignments for a
protein of known structure, or of an homologous
structure. NMR assignments are useful for probing
protein-protein interactions, protein-ligand binding,
and dynamics by NMR, and they are the starting point
for structure refinement. The algorithm, Nuclear Vec-
tor Replacement (NVR) was introduced to compute
assignments that optimally correlate experimentally-
measured NH residual dipolar couplings (RDCs) to
a given a priori whole-protein 3D structural model.
NVR requires only uniform '3N-labelling of the pro-
tein, and processes unassigned YN-HSQC and H-D
exchange-HSQC spectra, HN-I’N RDCs, and sparse
HN-HN NOE’s (dnns), all of which can be acquired
in a fraction of the time needed to record the tradi-
tional suite of experiments used to perform resonance
assignments. NVR efficiently assigns the '>’N-HSQC
spectrum as well as the sparse dnns of the 3D N-
NOESY spectrum, in O (n?) time. We tested NVR
on data from 3 proteins using 20 different alternative
structures. When NVR was run on NMR data from
the 76-residue protein, human ubiquitin (matched to
four structures, including one mutant/homolog), we
achieved 100% assignment accuracy. Similarly good
results were obtained in experiments with strepto-
coccal protein G (99%) and hen lysozyme (100%)
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Figure 8. Relative importance of unassigned dnns in NVR: Comparison of the accuracy of NVR on various combinations of the data processed
by NVR. Column 1, the result of running NVR with chemical shift prediction and RDCs, but without H-D exchange rates or dnns. Column 2,
the result of running NVR with chemical shift prediction, RDCs, and H-D exchange rates, but without dnyns. Column 3, the result of running
NVR with chemical shift prediction, RDCs, and dyns, but without H-D exchange rates.

when they were matched by NVR to a variety of 3D
structural models.

Finally, our success in assigning 1UD7, which is
a mutant of ubiquitin, suggests that NVR could be
applied more broadly to assign spectra based on ho-
mologous structures. Using the results of a sequence
alignment algorithm (Altschul et al., 1990), protein
threading (Lathrop and Smith, 1996; Xu et al., 2000),
or homology modelling (Blundell et al., 1987; Fet-
row and Bryant, 1993; Greer, 1991; Johnson et al.,
1994; Sali et al., 1990), one would modify NVR to
perform assignments by matching RDCs to an ho-
mologous structure. Thus, NVR could play a role in
structural genomics.

Software

The NVR software is available by contacting the au-
thors, and is distributed under the Gnu Public License
(Gnu, 2002).

Methods

Data and preprocessing

Atomic coordinates for the 20 trial structures
(Tables 2-4), amide exchange data and residual di-
polar coupling data for 1D3Z, 1ESL and 3GB1 were
obtained from the PDB (Berman et al., 2000). The un-
assigned PN-HSQC and '’N-edited HSQC-NOESY
peak list for ubiquitin were obtained from the Driscoll
lab (Harris, 2002). N-HSQC peaks were cross-
referenced to diagonal NOESY peaks manually. NVR

uses only unambiguous dnN’s; unambiguous dnns
were extracted from the unassigned NOESY peak list.
Unambiguous was defined as a NOESY cross-peak
whose two 'H and one !N chemical shifts could
be cross-referenced to a unique pair of peaks in the
HSQC. Peaks whose ! H shifts were less than 0.01 ppm
apart, or whose !N shifts were less than 0.1 ppm
apart were said to be ambiguous. We obtained 42 un-
assigned dnns, for ubiquitin. This amounts to fewer
than one NOE per residue. It is interesting to ask
what percentage of the NOEs used by NVR are se-
quential NOEs. Of the unambiguous dnn’s used by
NVR for ubiquitin, 64% are sequential. For SPG and
Lysozyme, the percentages are 60% and 53%, respect-
ively. For ubiquitin, the unambiguous dnn’s used by
NVR comprise 26% of all sequential NOEs. For SPG
and Lysozome, the percentages are 30% and 31%,
respectively.

Amide exchange rates were obtained from the re-
straints files of the PDB structure 1D3Z. Specifically,
the backbone amides identified as hydrogen-bonded
restraints were defined to be slow-exchanging. Table
17 summarizes the number of slow-exchanging peaks
processed by NVR. The use of these hydrogen-bonds
represent something of an idealized scenario. The
implicit assumption is that the protection factors com-
puted from amide-exchange experiments include these
residues. We note, however, that it is also possible that
the hydrogen bonded restraints in the ‘.mr’ file may, in
fact, be a subset of the peaks that might be identified as
slow-exchanging in a standard amide-exchange study.
This is not a problem; the results of our perturbation
studies (Tables 14 and 15, pp. 123-124) indicate that
NVR is only sensitive to mislabelling labile protons as



Table 17. Slow-exchanging peaks
processed by NVR

Number slow-
Protein exchanging peaks

Ubiquitin 27
SPG 34
Lysozyme 27

slow-exchanging. Protons involved in hydrogen bonds
(with other residues) are, by definition, not labile.
Conversely, NVR is insensitive to non-labile protons
being labelled as fast-exchanging. Thus, by using the
hydrogen-bond restraints as a proxy for amide ex-
change rates, NVR is arguably using less information
than might be obtained from an amide exchange study.

Chemical shifts for SPG and Lysozyme were ob-
tained from the BMRB (Seavey et al., 1991). NOEs for
SPG and Lysozyme were obtained from the restraints
files from the PDB structures 3GB1 (Kuszewski et al.,
1999) and 1E8L (Schwalbe et al., 2001). Amide ex-
change rates for SPG and Lysozyme were obtained
from the restraints files from the PDB structures 1GB1
(Gronenborn et al., 1991)3 and 1E8L (Schwalbe et al.,
2001). Once again, peaks whose 'H shifts were less
than 0.01 ppm apart, or whose N shifts were
less than 0.1 ppm apart were said to be ambiguous,
and their corresponding NOEs were not used in the
experiments.

Pseudocode

Pseudocode for our algorithm is given in Algorithm
listings 1-4, and described formally in the following
sections. The pseudocode uses the symbols defined in
the sections below.

Initialization

During the initialization step, 5 weighted bipartite
graphs are constructed. Let R be the set of residues
in the model (removing prolines and the N-terminus).
For each residue r € R, AAType(r) returns the amino
acid type of residue r, and SSType(r) returns the
secondary structure type of r. The amino acid and
secondary structure types are used to predict the back-
bone amide chemical shifts. Let K be the set of
peaks in the HSQC. The chemical shifts of each peak
k € K are given by w(k) = (wy(k), on(k)), where
wp (k) and wy (k) are the amide proton and nitrogen
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chemical shifts, respectively. The difference between
these experimentally determined chemical shifts and
the set of predicted chemical shifts are converted into
assignment probabilities.

Each bipartite graph is defined as follows: B =
{K,R,E}, where E = K x R. Each edge e € E
is weighted, w : K x R — R™ U {0}. The edge
weights from each peak k € K are normalized so that
they form a probability distribution. If there are miss-
ing peaks in the HSQC then |K| < |R|. In this case
dummy peaks are added to the set K until |K| = |R].
Finally, the program MOLMOL (Koradi et al., 1996)
was used to add amide protons to the x-ray structures
and to identify any amide protons that are involved in
hydrogen bonds or not solvent accessible. The hydro-
gen bonded and non-solvent accessible amide protons
are correlated with H-D exchange rates.

Amide exchange constraints

Amide exchange rates are treated as binary geomet-
ric constraints. Specifically, non-hydrogen bonded
surface residues (as determined by the program MOL-
MOL on the input model) are assigned a zero edge
weight to any slow-exchanging peak. A uniform prob-
ability is given to any non-zero edges from a given
peak. Let By p be the bipartite graph constructed us-
ing the amide exchange data. Constructing By p takes
O (n?) time. By p is only used during the initialization
step of NVR to restrict the set of possible assignments.

We note that it is not necessary to compute exact
amide-exchange rates. Rather, NVR requires only that
slow-exchanging peaks be identified. These could be
obtained, for example, as follows: While the HSQC,
2 RDC and NOESY spectra are being recorded, a
second sample of the protein can be, in parallel, sus-
pended in 100% D,O allowing amide exchange to
occur. The recording, processing, peak picking and
cross-referencing of the HSQC, 2 RDC, and NOESY
spectra (in preparation for the NVR algorithm) will
certainly require at least a day. Thus, the second ly-
ophilized sample of the protein (in D,O) will have
ample time for exchange to occur. A final HSQC spec-
trum can then be recorded on the D,O sample. It is to
be expected that all labile protons will have exchanged
by this point. Thus, only peaks from slow-exchanging
protons will remain in the HSQC of the D,O sample.
One may simply choose a threshold to identify slow-
exchanging peaks. For example, if a given peak in the
D,0 sample has at least 25% of the volume of the
corresponding peak in the first HSQC, then that peak
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Algorithm 1 Pseudocode for NVR. All symbols are defined in the Methods section.

Input:
K <« Peak-list of the HN-ISN HSQC Spectrum
NOES <« Peak-list of the HN-15N HSQC-NOESY Spectrum
RDC; <« Dipolar couplings in the RDC Spectrum (medium 1)
RDCj < Dipolar couplings in the RDC Spectrum (medium 2)
HD < Slow-exchanging HSQC peaks, as determined by H-D exchange experiments
D <« structural model of the protein.

* Preprocessing Steps */
R < Extract-Residues (D) /* excluding prolines and N -terminus */
T <« Extract-Residue-Type-and-Secondary-Structure (D)
ABV <« Extract-and-Normalize-Backbone-Amide-Vectors (D)
U <« Extract-Non-Hydrogen-Bonded-Surface-Residues (D)
dNyNS§ < Extract-Unambiguous-DNNs (NOES, K)

/* Initialization Steps */
Bpyp < Build-Bipartite-Graph (K,R, U, HD)
ByoE < Build-Bipartite-Graph (K,R,ABV,dNNS)
BpyRrp < Build-Bipartite-Graph (K,R,Chemical-Shift-Prediction (T, BMRB))
BspyiFrs < Build-Bipartite-Graph(K,R,Chemical-Shift-Prediction (D, SHIFTS))
Bspirrx < Build-Bipartite-Graph(K,R,Chemical-Shift-Prediction (D, SHIFTX))
Synchronize-Graphs (Byp, BNoE. BBMRB: BsSHIFTS, BSHIFTX)
O <«—o
n < |R|

/* Phase 1*/
while |®| < 5 do
V <« E-Step(BpMRB: BSHIFTS, BSHIFTX)
® « O U M-Step(V)
BNoE < Apply-NOE(ByNoOE)
Synchronize-Graphs (BNOE, BBMRB, BSHIFTS, BSHIFTX)

/* Phase 2 */
while |®| < n do
/* Compute Tensors and Build RDC-based bipartite graphs */
S1 < Compute-Tensor (®, ABV, RDCy)
Sy < Compute-Tensor (®, ABV, RDCj3)
M < Build-Bipartite-Graph(K,R,ABV,RDCq, S;)
M, < Build-Bipartite-Graph(K,R,ABV, RDC3, S>)

/* Make Assignments using E/M */

V < E-Step(BpMRB. BsHiFTs, BsHiFTX, M1, M3)
® <« O U M-Step(V)

BnoE < Apply-NOE(BNOE)
Synchronize-Graphs (BNOE, BEBMRB: BSHIFTS, BSHIFTX)

return ©®




133

Algorithm 2 Pseudocode for E step. All symbols are defined in the Methods section. Note that |B] is at most 5, so |2$ | is a constant.

Input:
B, By, ..., By I* m bipartite graphs *
K I* set of peaks in the HSQC */

R /¥ set of residues in the protein */

/* Initialization Steps */
Let 8 = (B}, Ba, ..., B}
Let 25 be the power set (set of all subsets) of B
Let E=K xR
V = {K, R, E} I* build a bipartite graph */
foralle € E do

w(e) < 0/* initialize all edge-weights to 0*/

/* Compute Expectation Graph */
for all B; € 2% do
E; =Kuhn-Munkres (Combine-Graphs (B;, K, R)) FE CE*
foralle € E; do
w(e) < w(e) + 1 /* increment edge weight for V*/

return V

Algorithm 3 Pseudocode for Combine-Graphs All symbols are defined in the Methods section.

Input:
B I* A set of bipartite graphs */
K I* set of peaks in the HSQC */
R I* set of residues in the protein */

/* Initialization Steps */
C = {K, R, E} /* build a bipartite graph */
foralle € E do
w(e) < [[peg wp(e) I* compute joint probability for C */

return C

Algorithm 4 Pseudocode for M Step. All symbols are defined in the Methods section.

Input:
V I* Expectation Graph */

/* Make assignments */
Let wyax =Find-Maximum-Edge-Weight (V)

0 «w! (Wimnax)

return ©*
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is labelled as being slow-exchanging. More conservat-
ive estimates can be obtained by setting this threshold
higher. Alternatively, NVR already uses MOLMOL to
predict which backbone amide protons are likely to be
slow exchanging. Thus, the threshold could be set such
that the expected number of peaks is (roughly) equal
to the number of slow-exchanging amide protons, as
predicted by MOLMOL. Furthermore, two thresholds
might be used. The first (conservative) threshold might
be set to 50%. Any peak in the deuterated HSQC that
has 50%, or more, of the volume in the non-deuterated
HSQC will be processed as stated above. The second
threshold, say 25%, could be used as follows: For
any peak volume that falls between the 25% and 50%
threshold, we label it as being slow-exchanging, but
apply a ‘soft-threshold’. That is, rather than setting the
edge probability between these peaks and labile pro-
tons to 0, we instead set the probability to some small
value € > 0. Our perturbations studies on corrupted
amide exchange data (page 123) suggest that NVR
is robust to significant noise and error in the amide
exchange data when e-weights are used.

dnn Constraints

dnns are also interpreted as binary geometric con-
straints, as follows: If a particular spin system i has
a dyN with spin system j, and i is assigned to a par-
ticular residue r, then j’s possible assignments are
constrained to the set of residues that are within 8 A
of r in the model. In our experiments, 8 varied by
the size of the protein, ranging from 5 A to 8 A. The
larger tolerance for the largest protein (Lysozyme),
compensates for crystal contacts and conformational
differences between the protein in solution versus in
the crystal. Larger proteins may have larger violations
of dnns, particularly non-sequential dyns. The aver-
age number of non-sequential residues in our 3-radius
were 2.0, 3.5, and 7.9 for SPG, Ubiquitin, and Lyso-
zyme, respectively. Let Byog be the bipartite graph
built constructed using the NOESY data. Constructing
Byor takes O(n?) time.

Initially, Byo g is a complete bipartite graph, with
all edge weights set to 1/n where n is the number of
residues in the model. However, edges with weight O
in Byp are immediately set to O in Byog as well,
because the H-D exchange exchange data indicates
that assignment is impossible. These H-D exchange-
derived constraints are propagated throughout Byo g
as follows. Let k € K be a peak with one or more
zero-weight edges (due to H-D exchange-derived con-

straints). Let O C R be the set of residues with
non-zero edge weights to k. That is, Q is the set of
possible assignments for k. Let T C R be the set of
residues within 8 A of any element of Q. Let U C K
be the set of peaks that have a dyn with k. For each
u € U,letV, C R be the set of residues with non-zero
edge weights to u. We thenset V, < V, N T.

This procedure for propagating assignment con-
straints via the dnns is run after each iteration of the
Expectation/Maximization algorithm (described be-
low). We will call this procedure ApplyNOE(BnoE)
which takes as input Byor and updates Byog in the
manner just described. ApplyNOE(By ok ) takes O (nz)
time because each peak is considered once, in some
fixed order. If a peak has a dnn, then it forces an
update of at most a constant number of other peaks,
due to geometric constraints and the sparseness of the
unambiguous dnns. Each update may require updating
O (n) edges.

Chemical shift constraints

A training set of 457 different protein structures
(solved by NMR) and their associated chemical shifts
as deposited in the BMRB (Seavey et al., 1991) were
obtained. None of the 3 proteins in our test set (Ubi-
quitin, Lysozyme, SPG) were present in this set. The
average and standard deviation of the amide proton
and nitrogen chemical shift was computed for each
amino acid, in each secondary structure type (o, £,
coil). In addition, the maximum number of standard
deviations above and below the mean was recorded for
the training set. These statistics were used to construct
edge weights on a bipartite graph:

wk,r) =Pk r)= f(k,r) “4)

where k € K and r € R. Here,

fk,r) = N(wpk) —pwu @), o )N (wy k)
— N (r), on(r)). &)

Consider the distribution of a subset of all chemical
shifts in our training set with the same amino-acid
and secondary structure type as r. \(r) is a pair,
(W (r), un(r)), corresponding to the mean amide
proton and nitrogen chemical shifts observed in that
distribution. o(r), similarly, is defined as the standard
deviations of the amide proton and nitrogens of that
distribution. The function N (x — |, o) is the prob-
ability of observing the difference x — | in a normal



distribution with mean p and standard deviation o.
That is,

Nx —p,0) =

1 (x —p)?
or exp <—720 ) (6)

Thus, the probabilities are computed using two one-
dimensional Gaussian distributions (one for proton
shifts, one for nitrogen shifts) with means (r) and
standard deviation o(r). We are thus implicitly assum-
ing that the two dimensions are independent. More
sophisticated treatments that model the covariance
between the two dimensions are worth investigating.
If a given amide proton or nitrogen shift is beyond
the maximum number of standard deviations (as com-
puted in the training set), its weight is set to zero.
Let Bpmrp be the bipartite graph whose edges are
computed using the statistics from the subset of the
BMRB. Constructing Bp,,r» takes 0(n2) time.

The same training set was used to compute stat-
istics on the accuracies of the programs SHIFTS (Xu
and Case, 2001) and SHIFTX (Neal et al., 2003). The
mean and standard deviation between the predicted
amide proton and nitrogen shift, as well as the max-
imum number of standard deviations above and below
the mean was computed for the training set. These
statistics were used to construct two additional bi-
partite graphs, in the manner just described, between
the peaks and residues in our test set. Let Bypifrs
and Bgyif;y be the bipartite graphs whose edges are
computed using the statistics computed from the pro-
grams SHIFTS and SHIFTX, respectively. Constructing
Bypifts and Bgpifx takes O (n?) time.

When the sequence of the target protein is not
100% identical to the structural model, chemical shift
predictions are made based on the amino acid type of
the target protein, but the secondary structure type of
the homologous model. For example, 1UD7 is mutant
form of ubiquitin where 7 hydrophobic core residues
have been altered (I3V, V5L, 113V, L15V, 123F, V26F,
L67I). Chemical shift predictions were made using the
BMRSB statistics of the target protein’s (1D3Z’s) native
sequence (I3, V5, 113, L15, 123, V26, L67) but the
secondary structure types dictated by 1UD7.

Next, the graphs BNvo g, Bomrb Bshifrs and Bgpifrx
are synchronized. That is, any edge whose weight is
zero in one graph is set to zero in all graphs. The NVR
algorithm always ensures that all graphs are synchron-
ized prior to any iteration. Using Bpmrp Bshifrs and
Bypifix, the top y candidate assignments for each peak
are then extracted by first selecting, for each peak, the
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edge whose weight is larger than n —vy of the remaining
edges. This edge-weight is used as a threshold and the
n — y edges whose edge-weights are smaller than the
threshold are set to 0. Selecting the threshold can be
done in O(n) time ((Cormen et al., 2001), pp 189-
192). In all our experiments we took y = 30. Each of
the yn selected edges selects a residue in R. Let Oy C
R be the subset of residues selected in this manner.
Clearly the size of Qy is O(n). The reduction from
a quadratic to a linear number of edges makes each
bipartite graph sparse. NVR repeatedly calls max-
imum bipartite matching as a subroutine. We used an
implementation of the Kuhn—Munkres algorithm for
maximum bipartite matching (Kuhn, 1955). On a com-
plete graph, that algorithm runs in time O (n?), where
n is the number of vertices in the graph (here, n is also
the number of residues in the protein, excluding pro-
lines and the N-terminus). Kuhn—Munkres considers
every edge in the bipartite graph, performing O (n)
work per edge. A complete graph has O(n?) edges,
so Kuhn—Munkres requires O (n3) time on a complete
graph. In our algorithm, however, there are only O (n)
edges, thus, this same algorithm runs in time 0(n2)
on a sparse graph. The Kuhn—Munkres algorithm does
assume that a complete matching is possible in the
resulting graph. That is, each peak & € K must be
assigned to a unique residue r € R. In principle, if
only the top yn candidate assignments are used then
it is possible that |Q,| < |R|, thereby violating this
assumption. However, it can be shown using a prob-
abilistic argument (Cormen et al., 2001, pp. 109-110)
that the constant y = 30 will suffice for any n < 1013,
which more than adequately covers range of protein
sizes accessible to NMR. Furthermore, from a purely
complexity-theoretic point of view, the same argument
says that the constant y = 3 would suffice for every
protein we tested; in practice we used the constant
y = 30 for robustness: since the NVR algorithm
runs in only seconds to minutes, there is no practical
performance distinction between using 3 versus 30.
Finally, we note that the complete graph could be used
as input, and that this would result in a slow-down by
only a linear factor (O (n)).

Tensor determination (phase 1)

The input to the first phase are the bipartite graphs
BNoE, Bbmrb, Bshifts and Bgpifrc. Let © be the
master list of assignments. Initially, ® is empty. Ex-
pectation/Maximization is used to make the first few
assignments using Bpyrp, Bsnifrs and Bypifix.
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The E step is computed as follows. We construct a
new bipartite graph V, called the expectation graph,
whose edge weights are initialized to 0. Let B =
{Bbmrbs Bshifts, Bshifix} and 28 be the powerset of
B. Thus, each element b € 2% is a subset of B.
The size of 2% is Z? (f) = 7. Combine-Graphs is
a function that takes as input a set of bipartite graphs
and returns a new bipartite graph. The edge weights of
the output graph are the joint probabilities of the edges
in the input graphs:

wik, r) = [ Jwik.r. @)

ieb

Let C = {Combine-Graphs(b) | b € 2%)}. Clearly,
|C| = |2%8| = 7. Furthermore, each ¢ € C is sparse
because the edges in ¢ are the same as the edges in
Bpmrbs Bshifts, and Bgpifrx, which are each sparse.
Only the weights are different (Equation 7).

For each combined graph ¢ € C, we compute a
maximum bipartite matching. Let H. C E be the
matching computed on c. For each edge e € H, we
increment the weight on the same edge in the expect-
ation graph, V, by 1. This is done for all 7 bipartite
matchings. Informally, each bipartite matching ‘votes’
for a set of edges. Thus, edge weights in V record the
number of times a particular edge was part of a max-
imum bipartite matching. Note that the edge weights
are probabilities in the bipartite graphs. Thus, a bi-
partite matching gives a maximum likelihood solution
on that graph, which in turn maximizes the expected
log-likelihood of the average edge weight.

Let wpqx be the largest edge weight in V. The
M step is computed, and assignments are made by
O «— U w‘l(wmax). As previously stated, each
of the constituent votes used to construct V is a max-
imum likelihood solution — it maximizes the expected
edge weight in the matching. Therefore, in the bipart-
ite graph V, those edges with maximum votes have the
highest expected values over all combinations of the
data, thus satisfying the condition in Eq. (3). In our 20
experiments w,,,, was always 7. That is, all possible
combinations of Bpurb, Bshifrs and Bgpjfex voted for
the same edge.

When an assignment is made, the associated nodes
k € K and r € R are removed from Byopg. Next,
the procedure ApplyNOE(ByoEg) is applied. Finally,
Bpmrbs Bshifrs, and Bgpirsx are synchronized with
ByoE so that all graphs have the same set of zero-
weight edges. Each graph is then re-normalized so that
the edge weights from each peak form a probability

distribution. This completes a single iteration of the
EM algorithm.

The E step takes O(n?) time. Computing the 7
maximum bipartite matchings takes O (n?) because
each graph is sparse. The M step also takes O (n?)
time to identify the maximum weight edges and O (n?)
time to run ApplyNOE(Byog). Thus, each iteration
of the EM algorithm takes O (n?). In the first stage,
this algorithm is repeated until at least 5 assignments
have been made. In our 20 trials, this never required
more than 2 iterations. The algorithm then proceeds to
phase 2.

Resonance assignments (phase 2)

The input to the second phase are the current bipart-
ite graphs BNoE, Bomrbs Bsnifrs and Bgpifsx and O,
the master list of assignments. There are at least 5 as-
signments in ©®, thus we can determine the alignment
tensors for the two RDC media using SVD (Losonczi
et al., 1999). Let S| and S; be the alignment tensors
computed using the assignments in ® for media 1 and
2, respectively. Each order matrix is used to back-
compute a set of expected RDCs from the model using
Eq. (1). Let D), be the set of observed RDCs in me-
dium m, and F;, be the set of back-computed RDCs
using the model and S,,,. Two bipartite graphs M; and
M, are constructed on the peaks in K and residues in
R. The edge weights are computed as probabilities as
follows:

w(k,r) =Pk = r|Sn) = gk, r), ®)

where k € K and r € R. Here,

gk, r) = N(dn(k) = bn(r), om), ©)

where d,, (k) € Dy, by (r) € Fy,. Thus, the probab-
ilities are computed using a 1 dimensional Gaussian
distribution & (Equation 6) with mean d,; (k) — by, (r)
and standard deviation o,,. We used 0 = L/8 Hz in all
our trials, where L is the range of the RDCs in that me-
dium (the maximum-valued RDC minus the minimum
valued RDC). If an RDC is missing in medium i for
a peak k, then we set the weight w(k,r) = 1/ng in
graph M;, for each residue r of the n¢ remaining (i.e.,
unassigned) residues. The bipartite graphs M and M>
are synchronized with Byopg and then re-normalized
so that the edge weights are probabilities.

The second phase uses the same EM algorithm as
in phase 1, except that there are now two additional



bipartite graphs (M; and M>) used to compute the
expectation graph, V. Thus, there are le (f) = 31
graph combinations used to construct V. At the end of
each iteration, the alignment tensors S1 and S, are up-
dated (refined) using the master set of assignments, ®,
and M1 and M, are recomputed using Equation 8. As
in the first phase, each iteration of the EM algorithm
takes O (n?). Thus making the remaining O (n) assign-
ments, takes O (n3) time. In all our trials, no more than
10 iterations were ever required to make all remaining
assignments, since in practice, multiple assignments
are made on each iteration.

A performance enhancement can be gained at the
end of each iteration by taking M and M; and com-
puting a maximum bipartite matching on each. Let
H; € K x Rand Hy C K x R be the maximum
bipartite solutions for M| and M,, respectively. Let
H = Hi N Hy. If H # &, then the assignments in H
are made. This saves a constant factor in the runtime
because only two bipartite matchings are needed. The
use of this heuristic is justified because in general,
RDCs are better predictors of assignment than are
chemical shift statistics (see Figure 7).

Notes

1. In our experiments, we used the RDCs listed in the PDB re-
straints files; RDCs for residues 73-76 are available (Ottiger and
Bax, 1998), but were omitted from the restraints file due to the
flexibility of the C-terminus.

. There is an inversion symmetry for each of the three eigen-
vectors. Therefore, there are eight isometries which leave the
Saupe matrix unchanged. However, only four of those isomet-
ries are pure rotations (SO (3)). The other four are perversions in
0(3) — SO (3) (rotations composed with a reflection) and hence
are not used to integrate over SO (3).

3. The restraints file for PDB structure 3GB1 (Kuszewski et al.,
1999) did not list any explicit hydrogen bonds. Therefore, the
hydrogen bonds listed in PDB structure 1GB1 (Gronenborn
etal., 1991) were used instead.
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