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Abstract

High-throughput nuclear magnetic resonance (NMR) structural bi-
ology and NMR structural genomics pose a fascinating set of ge-
ometric challenges. A key bottleneck in NMR structural biology is
the resonance assignment problem. We seek to accelerate protein
NMR resonance assignment and structure determination by exploit-
ing a priori structural information. In particular, a method known as
nuclear vector replacement (NVR) has been proposed as a method
for solving the assignment problem given a priori structural infor-
mation. Among several different types of input data, NVR uses a
particular type of NMR data known as residual dipolar couplings
(RDCs). The basic physics of RDCs tells us that the data should be
explainable by a structural model and set of parameters contained
within the “Saupe alignment tensor”.

In the NVR algorithm, one estimates the Saupe alignment tensors
and then proceeds to refine those estimates.We would like to quantify
the accuracy of such estimates, where we compare the estimated
Saupe matrix to the correct Saupe matrix. In this work, we propose
a way to quantify this comparison. Given a correct Saupe matrix
and an estimated Saupe matrix, we compute an upper bound on the
probability that a randomly rotated Saupe tensor would have an error
smaller than the estimated Saupe matrix. This has the advantage of
being a quantified upper bound, which also has a clear interpretation
in terms of geometry and probability. While the specific application
of our rotation probability results is given to NVR, our novel methods
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can be used for any RDC-based algorithm to bound the accuracy of
the estimated alignment tensors. Furthermore, they could also be
used in X-ray crystallography or molecular docking to quantitate
the accuracy of calculated rotations of proteins, protein domains,
nucleic acids, or small molecules.

KEY WORDS—SO(3), rotations, subgroup method, orthog-
onal image, alignment tensor, residual dipolar couplings,
Saupe matrix, NMR structural biology

ABBREVIATIONS USED—NMR, nuclear magnetic reso-
nance; NVR, nuclear vector replacement; RDC, residual dipo-
lar coupling; 3D, three-dimensional; MR, molecular replace-
ment; SAR, structure activity relation; DOF, degrees of free-
dom; nt., nucleotides;SO(3), special orthogonal (rotation)
group in 3D;S1, the unit circle;S2, the unit sphere;S3, the unit
3-sphere; FAA, frame axis angle representation of rotations.

1. Introduction

In the field of structural biology, nuclear magnetic resonance
(NMR) is a powerful tool for studying the structure of pro-
teins, as well as elucidating the interaction of proteins with
other molecules. Typically, the results of protein solution-
state NMR experiments yield geometric measurements such
as inter-proton distances, dihedral bond angles, and global
orientations of bonds. While such information is extremely
useful, NMR data are initially unassigned. For example, we
are typically given a protein with a known sequence of amino
acids, which we simply index sequentially. NMR data will

165



166 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February–March 2005

give a set of constraints (e.g., inter-proton distances), but will
reference the amino acids with a different and arbitrary in-
dexing scheme (based on nuclear resonance frequency). The
process of determining the one-to-one mapping from one in-
dexing scheme to the other is known as “assignment”. As-
signment is the solution to an inverse problem, namely, the
mapping ofk-tuples of resonance frequencies to thek-tuples
of interacting NMR-active nuclei (Zimmerman et al. 1997;
Bailey-Kellogg et al. 2000; Al-Hashimi and Patel 2002; Hus,
Propmers, and Brüschweiler 2002). The assignment problem
is perhaps the critical bottleneck for the interpretation and
exploitation of NMR data. It is desirable to discover faster
methods for solving it, as well as to exploit any formal in-
sights about the combinatorial complexity and structure of
the problem.

Recently, a number of researchers have sought to acceler-
ate protein NMR assignment and structure determination by
exploiting a priori structural information. By analogy, rapid
structure determination is facilitated in X-ray crystallogra-
phy by the molecular replacement (MR) technique (Rossman
and Blow 1962) for solving the crystallographic phase prob-
lem. The corresponding bottleneck in NMR structural biology
is the resonance assignment problem. One would hope that
knowing a structural model ahead of time could expedite as-
signment. Moreover, even when the structure of a protein has
already been determined by X-ray crystallography or compu-
tational homology modeling, NMR assignments are valuable
because NMR can be used to probe: protein–protein interac-
tions (Fiaux et al. 2002), via chemical shift mapping (Chen
et al. 1993); protein–ligand binding, via structure activity rela-
tion by NMR (Shuker et al. 1996) or line-broadening analysis
(Fejzo et al. 1999); and dynamics, for example via nuclear
spin relaxation analysis (Palmer 1997).

To enable structure-based resonance assignment, the idea
of correlating unassigned experimentally measured residual
dipolar couplings (RDCs; Tjandra and Bax 1997; Losonczi
et al. 1999) with bond vector orientations from a known
structure was first proposed by Al-Hashimi and Patel (2002)
and subsequently demonstrated in Al-Hashimi et al. (2002),
who considered permutations of assignments for RNA, and
Hus, Propmers, and Brüschweiler (2002), who assigned a pro-
tein from a known structure using bipartite matching. Later,
we proposed a method known as nuclear vector replacement
(NVR; Langmead et al. 2003, 2004; Langmead and Donald
2004), which builds on these works and offers some improve-
ments in terms of isotopic labeling, spectrometer time, ac-
curacy, robustness and computational complexity. Within the
NVR algorithm (as well as within almost any RDC-based
algorithm) it becomes necessary to interpret the NMR data
known as RDCs. According to basic physics, the RDC data
should be explained by the structure of the protein, as well as
several parameters represented by the Saupe alignment tensor.
As is well known (Losonczi et al. 1999) the alignment tensor
may be represented by specifying its eigenvalues, together

with a three-dimensional (3D) rotation, called the principle
order frame (POF). In this paper we present a novel and rig-
orous method for bounding the accuracy of rotation matrices.
This general method is then applied to quantitate the accuracy
of POFs.

Specifically, in the NVR algorithm, one estimates the
Saupe alignment tensors and then proceeds to refine those
estimates. We would like to quantify the accuracy of such es-
timates, where we compare the estimated Saupe matrix to the
correct Saupe matrix. We propose a novel way to quantify this
comparison. Given a correct Saupe matrix and an estimated
Saupe matrix, we compute an upper bound on the probability
that a randomly-rotated Saupe tensor would have a geometric
error smaller than the estimated Saupe matrix.

In Section 2, we first give a brief introduction to RDCs.
Then, in Section 4.1, we explain our method for compar-
ing Saupe alignment tensors. Finally, we present some results
which quantify the accuracy of the NVR Saupe matrix estima-
tion. While the specific application of our rotation probability
results is given to NVR, these novel methods can be used for
any RDC-based algorithm to bound the accuracy of the es-
timated alignment tensors. Furthermore, they could also be
used in X-ray crystallography or molecular docking to quan-
titate the accuracy of calculated rotations of proteins, protein
domains, nucleic acids, or small molecules.

2. Background: Brief Introduction to Residual
Dipolar Couplings

RDCs are a quantum mechanical effect arising from the
dipole–dipole interaction of nuclear spins. While the detailed
physics are not important for our problem, we briefly explain
the formalism of RDCs.

RDCs are experimentally measured real values that may
be interpreted as constraints on the orientation of a chemical
bond. We explain this formally; we follow Wedemeyer, Rohl,
and Scheraga (2002) and Losonczi et al. (1999).

Let n be number of residues in the protein. Letvi be a
unit column vector inR3 which represents the orientation of
a chemical bond(1 ≤ i ≤ n). (We will consider only one
chemical bond per residue.) Let the Saupe Matrix,S be a
3 × 3 matrix which is symmetric and traceless.

We define the RDC to be a quadratic form over the unit
sphere

Di = D(vi ) ≡ k vT
i
Svi , (1)

wherek is a constant based on physical constants and the
dynamics of the protein in solution (Saupe 1968; Losonczi
et al. 1999; Wedemeyer, Rohl, and Scheraga 2002).

Suppose we are givenS andDi , then eq. (1) is a constraint
on the possible orientations ofvi . In a typical RDC experi-
ment,Di are measured; however, bothvi and the Saupe matrix
S are unknown. When computingS, it is useful to note thatS
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has only five degrees of freedom because it is real, symmetric,
and traceless.

Before continuing, it is worth noting that RDCs and the
Saupe matrix are of considerable interest for research in struc-
tural biology. Two of the dominant problems in NMR struc-
tural biochemistry are the assignment problem, and structure
determination or refinement. As mentioned in the introduc-
tion, there is interest in using RDCs to perform structure-based
resonance assignment (Tjandra and Bax 1997; Losonczi et al.
1999; Al-Hashimi and Patel 2002; Al-Hashimi et al. 2002;
Hus, Propmers, and Brüschweiler 2002; Langmead et al.
2003, 2004). In addition, RDCs have been used as geometric
restraints to determine and/or refine the structure of proteins
(Clore, Gronenborn, and Bax 1998; Degalio, Kontaxis, and
Bax 2000; Fowler et al. 2000; Andrec, Du, and Levy 2001;
Tian, Valafar, and Prestegard 2001; Rohl and Baker 2002;
Giesen, Homans, and Brown 2003; Wang and Donald 2004).
Because of the wide range of applications of RDCs, we be-
lieve it is important to analyze and characterize the accuracy
of Saupe alignment tensors.

3. Description of Problem and Previous Work

When we are givenDi and the corresponding (i.e., assigned)
vi , we can compute the correct1 Saupe matrixS via the singular
value decomposition (SVD) method (Losonczi et al. 1999).
Our problem, then, is to quantify the comparison between the
correct Saupe matrix, and an estimated one. We observe that
the Saupe matrix is real and symmetric; therefore, it has real
eigenvalues and orthogonal eigenvectors. In fact, the Saupe
matrices are completely specified by their eigenvalues and
eigenvectors. Accordingly, our similarity measure is broken
up into two parts: a comparison of eigenvalues, and then a
comparison of eigenvectors.

Following standard notation (Wedemeyer, Rohl, and
Scheraga 2002), we sort the eigenvectors by eigenvalue.2 We
then compare eigenvalues and eigenvectors of the same rank.
For the eigenvalues, one can simply compute the relative er-
ror between the estimated and correct eigenvalues. For the
eigenvectors, one can compute the angle between each cor-
rect eigenvector and its corresponding estimated eigenvector.

Both of these measures are simple and useful. The eigen-
values can be considered to have units of Hertz, which are
directly comparable to the resolution of the NMR spectrum.
That is to say, the resolution of the NMR spectrum gives us a
length-scale for judging the accuracy of the estimated eigen-
values. For example, if the error in the eigenvalues is much
larger than the resolution of the NMR spectrum, we would
judge the eigenvalues to be inaccurate.

1. For the purposes of comparison and to quantitate the accuracy of NVR,
“true” values of the alignment tensors are determined by computing the op-
timal Saupe matrix using the correct assignments. For this paper, it is not
important how the “correct” Saupe matrix is computed.
2. Following the convention of Wedemeyer, Rohl, and Scheraga (2002), we
label the largest eigenvalue asz, the smallest asy, and the middle asx.

For the eigenvectors, the angular errors are simple to un-
derstand geometrically. However, it is not clear how to judge
when the angular errors may be considered “small”. There are
several ways to do this, such as comparing the angular errors
to an angular threshold set by, say, the required accuracy for
drug design, or perhaps the angular changes from protein dy-
namics. While many of these methods are useful, we propose
a new measure of eigenvector accuracy which is purely geo-
metrical, and contains an intuitive notion of “how difficult” it
is to achieve a given angular accuracy. We see our method as
a new measure which provides some additional insight, and
not as a replacement of other measures.

4. Methods

4.1. Percentile Measure of Saupe Eigenvector Accuracy

We motivate our method with a simple idea: we will use proba-
bility as the judge of accuracy. Given an estimated answer, and
a correct answer, we can ask whether we randomly guessed
a solution. What is the probability that the random guess is
closer to the correct solution than the estimated answer? Al-
ternatively, we can ask what fraction of all possible solutions
are worse than our estimated solution?

To apply this idea, we need to specify two things: first, a
base measure of accuracy and, secondly, the space of all so-
lutions. For our base measure of accuracy, we will choose the
angular error between corresponding eigenvectors. Formally,
we define this as follows:

Let S1 = correct Saupe matrix (2)

Let S2 = estimated Saupe matrix (3)

Let λi = eigenvalues ofS1 whereλ3 > λ1 > λ2 (4)

Let vi = eigenvectors ofS1 whereS1vi = λivi (5)

Let ρj = eigenvalues ofS2 whereρ3 > ρ1 > ρ2 (6)

Let wj = eigenvectors ofS2 whereS2wj = ρj wj (7)

Let �(vi , wj ) = the angle between the vectorsvi andwj (8)

Let �min(vi , wj ) = min(�(vi , wj ), �(−vi , wj )). (9)

DEFINITION 1. Given: a Saupe matrixQ with eigenvalues
γ3 > γ1 > γ2 and corresponding eigenvectorsuk where
Quk = γkuk. We say the eigenvectors ofQ aregeometrically
more accuratethan the eigenvectors ofS2 when�min(ui , vi ) ≤
�min(wi , vi ) for all i ∈ {1, 2, 3}.

We define�min as stated above, because we need to account
for the inversion symmetry of eigenvectors. That is, ifv is an
eigenvector ofS1 with eigenvalueλ, then so is−v. Also, it is
worth noting that we require all the corresponding eigenvec-
tors of Q to have angular deviations which are smaller than
the deviations ofS1 eigenvectors.
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Next, we need to specify the space of all possible solu-
tions. We consider all possible rotations of a Saupe matrixQ
and its corresponding eigenvectors. Here, we encounter two
issues. First, we want to consider all rotations in an isotropic
manner, so that all orientations ofQ are equally likely in an
geometric sense. Secondly, we need to account for the inver-
sion symmetry of eigenvectors: ifuj is an eigenvector ofQ
with eigenvalueγj , then so is−uj . This inversion symmetry
will be accounted for as a multiplicative factor within our final
solution. In the following two sections, we formally explain
the details of how we address both issues.

4.1.1. Isotropic Representations of Rotations

There are many representations of rotations. Some examples
include Euler angles, axis–angles, and quaternions. We wish
to choose a representation which is isotropically uniform. Eu-
ler angles are known to have singularities in their parameter-
ization (so-called “gimbal lock” in computer graphics). As a
result, Euler angles are clearly not an isotropically uniform
representation. In our work here, we choose a modified ver-
sion of axis–angle, and show that it is isotropic. The motiva-
tion for our choice is simply convenience.

DEFINITION 2. Let P be a probability distribution over all
possible rotations.
Let L be an arbitrary set of rotations.
LetP(L) be the probability that we pick a rotation inL, if we
randomly choose according toP .
Let R be an arbitrary rotation.
Let RL be the set of all rotations generated by rotating each
element ofL by R.
Let P(RL) be the probability that we pick an rotation inRL,
if we randomly choose according toP .
We say that the probability distributionP is rotationally sym-
metric if and only if for all rotationsR, and for all possible
sets of rotationsL, thatP(L) = P(RL).

For those familiar with group theory, it is worth noting that
a rotationally symmetric probability distribution is a special
case of the Haar measure on rotations (Diaconis and Shahsha-
hani 1999). A Haar measure is a measure over subsets of the
group, and is invariant under group operations. In our case,
our group is the space of rotations, and our group operations
are composition of rotations.

DEFINITION 3. Let G(α, β, γ ) be a parameterization of ro-
tations,SO(3), with parametersα, β, andγ.

Let D(α, β, γ ) be a uniform probability distribution over the
range of(α, β, γ ).

Let v be a unit vector.
Let Fv be the distribution of unit vectors,Gv, induced byD.
We sayG is isotropically uniformif and only if both of the
following are true:
(1) for all v ∈ S2, Fv is the uniform distribution over the unit
sphereS2;

(2) D induces a distribution over rotations that is rotationally
symmetric.

Intuitively, we want a way to choose a random rotation
whereby we mean that the rotation of a vector,v, creates a new
vector,v′, which is completely randomized. In other words,
the distribution ofv′ should be uniform over the sphere.

There are several ways to choose a parameterizationG

which is isotropically uniform. For example, there is likely to
be a parameterization based on quaternions.Another example
is the orthogonal image representation of rotations (Mandell
et al. 2001; Mitchell 2004), which is closely related to our
method (we discuss the connection below). For our purposes,
we start with coordinate frames because they are easier to vi-
sualize. Frames are isomorphic to rotations, so this is simply
a choice of representation (see Appendix C). We start with a
modified axis–angle representation of frames and then, con-
ceptually, we convert frames into rotations. We then show that
the modified axis–angle representation of rotations is isotrop-
ically uniform. Finally, we use the geometry of the modi-
fied axis–angle representation to simplify some of the algebra
when we compute our similarity measure for Saupe matrices.

Because our axis–angle representation differs from the
canonical (classical) axis–angle representation of rotations,
we will define both, so that they can be compared. We will
call the new representation the frame-axis–angle (FAA) rep-
resentation, because it is more closely related to coordinate
frames. We will use the term “axis–angle” to mean the canon-
ical (classical) representation.

DEFINITION 4. By frame, we mean a choice of coordinate
frame. Formally, a coordinate frame is an ordered triple of unit
vectors(x, y, z) such that the vectors are orthogonal to each
other and oriented according to the right-hand rule,x×y = z.

DEFINITION 5. Let v be a unit vector inR3, and letθ ∈
[0, 2π).
We define the(canonical) axis–angle representation of rota-
tions to be a mapping which takes(v, θ) to the rotation byθ
radians around the axisv .

DEFINITION 6. Let u be a unit vector inR3, and letθ ∈
[0, 2π).
We define theFAA representation of framesto be a mapping
which takes(u, θ) to the coordinate frame specified as fol-
lows.
(1) Choose thez-axis to be alongu.
(2) Choose thex-axis to be perpendicular tou and rotated
aroundu by an angle specified byθ . The exact position of
θ = 0 is arbitrary,3 but is considered to be a constant for each
choice ofu.

3. As a result, the FAA representation is not unique, but is many parame-
terizations which differ only in their specification of whereθ = 0 for each
choice ofu.
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(3) Now they-axis is uniquely determined by the require-
ments that they-axis is orthogonal to the other two axes, and
that the coordinate system is right-handed.

While both axis–angle and FAA use the same parameters as
input (a unit vector and an angle), it should be clear that axis–
angle and FAA are different. In the axis–angle representation,
both the axis and angle of the rotation are explicitly specified.
However, in FAA, neither the axis nor the angle of rotation is
immediately obvious; the vector in axis–angle represents the
axis of rotation, while in FAA it represents the new position
of thez-axis.

We note that the FAA representation is a one-to-one and
onto mapping betweenS2 × S1 and frames. For a proof, see
Appendix B. We also note that FAA is a discontinuous pa-
rameterization of frames. While this might appear to be prob-
lematic, it does not affect our proof that FAA is an isotropic
representation of frames (the proof is in Appendix A). How-
ever, we do address the discontinuities explicitly when we
integrate over the parameters of the FAA representation (see
Section 4.1.2 and eq. (19)). For a proof that FAA is discon-
tinuous, see Appendix B.

DEFINITION 7. LetH be a frame (coordinate frame) specified
by (x, y, z).
Let v = [x, y, z] be a unit vector.
We defineapplying frameH to v to be the vectorv′ = Hv =
xx + yy + zz.

We define isotropically uniform parameterizations of
frames in a manner analogous to rotations.

DEFINITION 8. Let P be a probability distribution over all
possible frames.
Let L be an arbitrary set of frames.
Let P(L) be the probability that we pick a frame inL, if we
randomly choose according toP .
Let R be an arbitrary rotation.
Let RL be the set of all frames generated by rotating each
element ofL by R.
Let P(RL) be the probability that we pick a frame inRL, if
we randomly choose according toP .
We say that the probability distributionP is rotationally sym-
metric if and only if for all rotationsR, and for all possible
sets of framesL, thatP(L) = P(RL).

DEFINITION 9. Let H(α, β, γ ) be a parameterization of
frames, with parametersα, β, andγ.

Let D(α, β, γ ) be a uniform probability distribution over the
range of(α, β, γ ).

Let v be a unit vector.
Let Fv be the distribution of unit vectors,Hv, induced byD.
We sayH is isotropically uniformif and only if both of the
following are true:
(1) for all v ∈ S2, Fv is the uniform distribution overS2;
(2) D induces a distribution over frames that is rotationally
symmetric.

We now claim that the FAA representation is isotropically
uniform. The problem of how to isotropically sample rota-
tions has been studied extensively. Our particular choice of
representation is based on convenience and usefulness when
applied to our particular problem (comparison of Saupe ma-
trices). We prove that our FAA representation is isotropically
uniform, by relating it to known representations of rotations
that are rotationally symmetric. In particular, there is a closely
related representation of rotations known as the orthogonal
image representation (Mandell et al. 2001; Mitchell 2004).
Our FAA representation is a direct parameterization of the
orthogonal image representation. The orthogonal image rep-
resentation can be seen as a special case of the subgroup
algorithm (Diaconis and Shahshahani 1999). Therefore, the
FAA representation is a parameterization of the subgroup al-
gorithm. The subgroup algorithm provides a general way for
computing uniformly distributed variables of compact groups.

For some intuition, and a sketch of the proof that the FAA
representation is isotropically uniform, seeAppendixA. For a
discussion of some technical points about the FAA represen-
tation, see Appendix B. In Appendix C we discuss the rela-
tionship between a few different representations of rotations,
including FAA, orthogonal image, and quaternions.

THEOREM 1. The FAA parameterization is isotropically
uniform.

Proof. See Appendix A. �
FAA is an isotropic representation of frames. We now

connect frames to rotations, to show that FAA is an
isotropic representation of rotations. Each rotation deter-
mines a unique frame relative to the standard Euclidean
frame([1, 0, 0], [0, 1, 0], [0, 0, 1]). Similarly, each frame de-
termines a unique rotation representing the transformation
that changes the Euclidean frame into the given frame. Note
that the columns of a rotation matrix are the unit vectors of
its corresponding frame, and vice versa. So, this association
is one-to-one and onto. In fact, frames and rotations are iso-
morphic (see Appendix C).

Now that we have an isotropically uniform representation
of frames and rotations, we can proceed to consider orienta-
tions of Saupe matrices and their eigenvectors.

4.1.2. Orientations of Saupe Matrices and Eigenvectors

We now return to our problem of how to compare eigenvectors
and orientations of Saupe matrices. We solve our problem in
three stages. First, we simplify the problem by ignoring the in-
version symmetry of the eigenvectors. Secondly, we approx-
imate the solution to make the algebra more tractable. Our
approximation will yield a strict upper bound on the proba-
bility. Thirdly, we account for the inversion symmetry of the
eigenvectors.

Because Saupe matrices are real and symmetric, their
eigenvectors are orthogonal. The orthogonal eigenvectors can
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be used to form a coordinate system (frame). For choosing
the coordinate system, one may recall that we have sorted the
eigenvectors by eigenvalues and then labeled them by their
sorted rank. Using the standard labeling, we take the eigen-
vector with the largest eigenvalue, and label it as thez-axis;
the eigenvector with the smallest eigenvalue is labeled as the
y-axis; finally, the remaining eigenvector is labeled as thex-
axis. For now we ignore the inversion symmetry of the eigen-
vectors, and assume them to be uniquely determined and to
be a right-handed coordinate system. (Due to the inversion
symmetry, it is always possible to choose the eigenvectors to
form a right-handed coordinate system. Later, we will allow
for the inversion symmetry in our calculations.)

Our now simplified problem can be stated as follows:

Let F1 = (x1, y1, z1) coordinate frame of correct Saupe

Matrix (10)

Let F2 = (x2, y2, z2) coordinate frame of estimated Saupe

Matrix (11)

Let �(v, w) = the angle between the vectorsv andw.

(12)

Suppose we randomly choose a new coordinate system
F3 = (x3, y3, z3). We want to know the probability thatF3 is
geometrically closer toF1 than isF2. The three constraints
are:

Let C1 be the constraint:�(x1, x3) ≤ �(x1, x2) (13)

Let C2 be the constraint:�(y1, y3) ≤ �(y1, y2) (14)

Let C3 be the constraint:�(z1, z3) ≤ �(z1, z2) (15)

We chooseF3 in a manner that is isotropically uniform over
all frames (coordinate frames).Another way to state our prob-
lem is to ask what fraction,Pc, of all frames,F3, satisfyC1, C2,
andC3 simultaneously. By integrating characteristic functions
over all frames, we can compute the fraction,PC of frames
that satisfy our constraints. We use the FAA representation to
perform the integration in an isotropically uniform manner.

Let �(v, θ) = the frame specified by FAA (unit vector

v,angleθ ). (16)

Let PC = the probability thatF3 satisfiesC1, C2, andC3.
(17)

Let Ki(v, θ) = (characteristic function:)Ki = 1 if Ci is

satisfied forF3 = �(v, θ), otherwise,Ki = 0. (18)

Let PC = Prob(C1 ∧ C2 ∧ C3)

= 1

4π

∫
S2

1

2π

∫
[0,2π ]

K1(v, θ)K2(v, θ)K3(v, θ) dθ dA.

(19)

The integral (19) is over the unit spherev ∈ S2 with area
element dA, and the unit circleθ ∈ S1 with line element dθ .
We parametrize the unit circle by the angleθ ∈ [0, 2π ].

At this point, we need to address a technical point, namely
the fact that FAA is not a continuous representation of frames
(see Appendix B). Although the FAA parameterization of
frames is not continuous, the set of all frames is continuous.
Conceptually, we are integrating over all frames, but we are
forced to parametrize the set to simplify the computation. The
discontinuities will not affect our integral, eq. (19), as long as
the integrand is bounded in the neighborhood of the disconti-
nuities, and the discontinuities occur on a set of measure zero.
The integrand is bounded because the characteristic functions
Ki(v, θ) are bounded.

To ensure that the discontinuities are a set of measure zero,
we consider a special case of FAA. As mentioned in the foot-
note for Definition 6, the FAA representation is not unique. To
completely specify an FAA representation,(u, θ), we need to
define the new location of thex-axis whenθ = 0 for eachu.
We choose a unique FAA representation which has disconti-
nuities on a set of measure zero. LetR(u) be the rotation that
maps thez-axis tou by moving thez-axis along the geodesic
between them. Next, letRu(θ) be a rotation byθ degrees
around the axisu. We can now uniquely choose our represen-
tation asFAA(u, θ) = Ru(θ)R(u). This mapping from(u, θ)

to rotations (frames) is continuous everywhere except when
the geodesic betweenu and thez-axis is not uniquely defined.
On the 2-sphere, geodesics are unique except between antipo-
dal points. As a result, our mapping is continuous everywhere
except whenu points in the negativez-direction. For our FAA
parameterization, the discontinuity atu = [0, 0, −1] occurs
only on a set of measure zero, therefore our integral (19) is
unaffected by the discontinuity.

Now, computingPC exactly is likely to be very complicated
algebraically. Instead, we simplify the algebra by computing
an upper bound onPC. We obtain an upper bound by replacing
K1 andK2 with the upper bound on their individual values.
First, we replace the factorK2 with unity. This is equivalent
to relaxing away our constraintC2.

Secondly, we will find an upper bound onK1. However,
before we obtain an upper bound onK1, we wish to simplify
the integral slightly. Notice thatK3 corresponds to constraint
C3 which constrains only thez-axis ofF3. We see thatK3 has
no dependence onθ . (The choice ofθ only rotates about the
axis v = z3, and does not change the direction ofv.) As a
result, we can pullK3 outside the innermost integral. We are
left with

K3(v, θ) = K3(v) (20)

PC ≤ 1

8π2

∫
S2

K3(v)

∫
[0,2π ]

K1(v, θ) dθ dA. (21)

To obtain an upper bound onK1, we consider the geometry
of the problem. The inner integral ofK1 can be thought of as a
function ofv. We can simply ask, then, what is the maximum
value of that function, over all possiblev?
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Fig. 1. Diagram for upper bound on the integral ofK1. We start with the unit sphere. We consider two coordinate frames
(x1, y1, z1) and (x3, y3, z3). The two circles are labeled by their angular radii�(x1, x2) and �(z1, z2). These two circles
represent our constraintsC1 andC3 respectively (see eqs. (13)–(15)). The circle aroundx1 we callO, and we call the other
circle W . The constraintC1 requires thatx3 fall inside of the circleO, and the constraintC3 requires thatz3 fall inside of the
circleW . Notice that oncez3 is fixed,x3 can travel along a great circle, asθ rotatesx3 aroundv (by constructionv = z3). The
maximal range ofθ which satisfies our constraintC1 cannot be larger than the diameter of the circleO which is 2�(x1, x2).

Let J1 = max
v∈S2

∫
[0,2π ]

K1(v, θ) dθ. (22)

To visualize the geometry of our problem, let us work in
the coordinate frameF1 of the correct Saupe matrix (see Fig-
ure 1). Our constraintC1 can be visualized as a small circle
sitting on the equator (in the figure, this circle is labeledO

and has an angular radius of�(x1, x2)). TheC1 requirement
that �(x1, x3) ≤ �(x1, x2) means that we requirex3 to fall
within this circle. For a fixedv, we havez3 = v is also fixed.
Then, asθ rotates around, the location ofx3 will sweep out
a great circle. If this great circle intersects the circleO, then
we can satisfy our conditionC1. If the great circle does not

intersect the circleO, then for this choice ofv, there is no
angleθ which can satisfyC1.

Let us return to eq. (22). For a fixed choice ofv, the value
of the integral is equal to the angle for which the indicator
functionK1(v, θ) is equal to unity (non-zero). This angle is
simply the range ofθ for whichx3 falls inside the circle. This
is simply the length of the arc, of the great circle ofx3, which is
inside the circleO. Over all possible choices ofv, the maximal
length of this arc cannot be more than the angular diameter of
the circleO. Therefore, an upper bound on eq. (22) is simply

2�(x1, x2) ≥ J1 = max
v∈S2

∫
[0,2π ]

K1(v, θ) dθ. (23)
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Our equation for satisfying our constraints now looks like

PC ≤ 1

8π2

∫
S2

2K3(v)�(x1, x2) dA (24)

= �(x1, x2)

4π2

∫
S2

K3(v) dA. (25)

The final integral involvingK3 is simply the area of the
disc wherev satisfies�(z1, v) ≤ �(z1, z2). We can perform
this integral in polar coordinates to obtain

∫
S2

K3(v) dA =
�(z1,z2)∫

0

2π∫
0

sin(θ) dφ dθ

= 2π(− cos(�(z1, z2)) + cos(0)). (26)

Combining our results, we obtain

PC ≤ �(x1, x2)

4π2

∫
S2

K3(v) dA (27)

PC ≤ �(x1, x2)

2π
(1 − cos(�(z1, z2))) (28)

PC ≤ �(x1, x2)

2π
(1 − z1 · z2). (29)

4.2. Inversion Symmetries and Eigenvectors

We now account for the effects of inversion symmetry onPC.
Originally, we assumed that the eigenvectors were uniquely
determined, and were oriented as a right-handed coordinate
system. While orthogonal, the eigenvectors are not uniquely
determined due to an inversion symmetry. An eigenvectorv
has the same eigenvalue as−v. Thus, bothv and −v are
possible eigenvectors for a given eigenvalue.

To account for this, we shall use the idea of measuring the
angle between lines which pass through the origin. These lines
are similar to vectors, however, they are “bi-directional” in the
sense that they do not have a definite direction like a vector.
Our characterization then is to replace our eigenvectors with
lines parallel to the eigenvectors, and which pass through the
origin.

DEFINITION 10. Letv1 andv2 be vectors.
Let l1 andl2 be the corresponding lines ofv1 andv2

We define the angle betweenl1 and l2 to be equal to
�min(v1, v2) = min(�(v1, v2), �(v1, −v2)).

Note that this definition measures the smaller angle be-
tween two intersecting lines. We choose the smaller angle, so
that identical lines will have an angular difference of zero. In
addition, this approach will overestimate the probabilityPC,
because it may believe that vectors which are nearlyπ radians
off are very close. Thus, it will tend to include extra frames
in the overestimate. This is consistent with our approach of
computing an upper bound onPC.

Notice that in Definition 10 we need only consider two
cases:(v1, v2) and (v1, −v2). This is significant, because it
means that for each angle we constrain, we have only two
possibilities. Our angular constraints (13)–(15) now become

Let C ′
1 be the constraint:�min(x1, x3) ≤ �min(x1, x2) (30)

Let C ′
2 be the constraint:�min(y1, y3) ≤ �min(y1, y2) (31)

Let C ′
3 be the constraint:�min(z1, z3) ≤ �min(z1, z2). (32)

If we were to perform the same analysis as above, we dis-
cover that we gain a factor of 2, for two out of the three
constraints. Why only two out of three? Because a rotation is
completely specified by the mapping of two vectors. Oncez3

andx3 are specified, the line representing they-axis is fixed.
The only possibilities are thaty3 satisfiesC ′

2 or not, and there
are not multiple ways to satisfy or violate the condition.

Conceptually, we first satisfyC ′
3. For each choice ofz3,�min

forces us to look at the choice−z3. These two possibilities
represent two rotations that satisfy the constraintC ′

3. Next, we
attempt to satisfyC ′

1. For each choice of−z3, and for each
choice ofx3 that satisfiesC ′

1, we know that a choice of−x3

which also satisfyC ′
1. Combining these possibilities, we obtain

a total of four possible solutions which satisfyC ′
1 andC ′

3.
At this point, one might wonder if the inversion symmetry

can also be applied toC ′
2 to generate a total of eight solutions.

However, this is impossible. If we inverty3 to become−y3,
then our frame may no longer be valid (generated by a pure
rotation). Instead, we may generate what is known as a “per-
version”, which is a pure rotation composed with a planar
reflection. (Perversions change the handedness of our coordi-
nate system.) Our stated problem only considers all possible
rotations and does not include perversions.

Stated a different way, the choices of inverting (or not in-
verting) z3 and x3 can be accounted for by modifying the
parametersv andθ in the FAA representation. However, once
z3 andx3 are specified, one is not free to choosey3 because
it is fully determined. Independently specifying the inversion
(or non-inversion) ofy3 cannot be accounted for byv andθ ,
because the resulting transformation may not be a rotation
(frame). Similarly, one is free to specify any two out of the
three axes as possibilities for inversion. However, one cannot
choose all three.

As a result, we need to modify our eq. (29) forPC by a
factor of 4:

PC ≤ 2�(x1, x2)

π
(1 − z1 · z2). (33)

Finally, we convert this probability into a lower bound on
the percentile:

Percentile = 1 − PC (34)

Percentile ≥ 1 − 2�(x1, x2)

π
(1 − z1 · z2). (35)
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This percentile represents the fraction of all frames that
have a greater geometric difference fromF1 than the geomet-
ric difference betweenF1 andF2.

5. Applications to NMR Residual Dipolar
Couplings

We use our percentile measure, e.g., (35) to characterize and
quantify the accuracy of estimates of Saupe matrices. In par-
ticular, we have investigated the accuracy of Saupe matrices in
the NVR algorithm (Langmead et al. 2003, 2004; Langmead
and Donald 2004). Briefly, the NVR algorithm is designed to
solve the NMR assignment problem when the structure of the
target protein is known, or if a homologous structure is known.
To achieve this, NVR uses a variety of data, including a model
structure, RDCs, an HSQC spectrum, amide exchange data,
and unassigned NOEs. To correlate the RDC data against a
model structure, NVR needs an estimate of the Saupe ma-
trices. Given the Saupe matrix and an NH bond vector, we
can use eq. (1) to convert the vector into a simulated RDC
value. The simulated RDC value can then be compared to
experimentally observed RDC values during the assignment
process. We refer the reader to Langmead et al. (2003, 2004)
for the details of the NVR algorithm.

The NVR algorithm was demonstrated on NMR data from
a 76-residue protein, human ubiquitin, matched to four struc-
tures, including one mutant (homolog), determined either
by X-ray crystallography or by different NMR experiments
(without RDCs; Langmead et al. 2003, 2004). The feasibil-
ity of NVR was further demonstrated for different and larger
proteins, using different combinations of real and simulated
NMR data for hen lysozyme (129 residues) and streptococcal
protein G (56 residues), matched to a variety of 3D structural
models (Langmead et al. 2003, 2004); see Table 7.

The first stage of NVR is to estimate the Saupe matri-
ces. Sufficient accuracy in this first stage is important, since
subsequent stages of the algorithm depend on a reasonable
initial estimate. The initial estimate is usually performed by
employing a small number (around five) of high-confidence
assignments. The resulting Saupe matrix is then used to refine
probabilities of assignments, and then additional assignments
are made. The additional assignments are used to refine the
Saupe matrix further, and the process is repeated until as-
signment is complete. (For details of the NVR algorithm, see
Langmead et al. 2003, 2004). Because of its iterative nature
and lack of back-tracking, a poor initial estimate of the Saupe
matrix could lead to additional assignments that are incorrect.
The accuracy of the Saupe matrix might be degraded if it is
“refined” with these incorrect assignments. It is then possible
that the entire iterative cycle would diverge from the correct
assignment. As a result, we are interested in quantifying the
accuracy of the initial and final Saupe matrices in NVR.

We characterize the accuracy of the Saupe matrix estimates
in three ways. First, we compare the eigenvalues by looking at

percentage differences of the axial and rhombic components
of the tensor (Wedemeyer, Rohl, and Scheraga 2002):

Let S = a Saupe matrix (36)

Let λi = eigenvalues ofS whereλ3 > λ1 > λ2. (37)

DEFINITION 11. Theaxial componentof S is defined to be
Da = (1/2)λ3.

DEFINITION 12. Therhombic componentof S is defined to
beDr = (1/3)(λ1 − λ2).

Next, we consider the angular error between correspond-
ing eigenvectors. Finally, we use our percentile measure to
characterize the fraction of all orientations which have larger
angular errors. See Tables 1–3. As we can see, the percentiles
are above 80%, with typical values above 94%. This level of
accuracy is sufficient for subsequent stages in NVR to achieve
good accuracy for assignment (see Table 7). After assignment
is complete, the Saupe matrices have been refined with very
good accuracies (see Tables 4–6). We note that when NVR
completes an assignment with very high accuracy, the corre-
sponding Saupe tensor will be very close to the actual tensor.
This is because the correct tensor is the Saupe matrix that op-
timally fits the protein structure given the correct assignment
(see footnote 1).

Before assignment, a few of the angular deviations ap-
pear to be significantly large (approaching 30◦; see Tables 1–
3); however, the percentile measure shows the difference in
overall rotation to be small (percentiles over 94%). Despite
apparently significant angular deviations, NVR converges to
assignments with high accuracy. This may suggest that for
our specific case here (NVR), the percentile measure could
be more useful than angular deviations for characterizing the
accuracy of Saupe matrices, in the sense that it might be a more
accurate indicator of when NVR will converge with high ac-
curacy. We believe these results indicate that the percentile
measure has potential to provide some insight for many ap-
plications of RDCs.

6. Conclusions

We have presented a novel similarity measure for quantifying
the error of eigenvectors of Saupe matrices. This was done
by developing a probability-based similarity measure for 3D
rotations. The similarity measure yields a lower bound of a
percentile, which represents the probability that a randomly
rotated Saupe matrix would contain eigenvectors that have a
larger angular deviation. We then used this percentile measure
to study the performance of the automated NMR assignment
method NVR (Langmead et al. 2003, 2004). We believe that
the percentile measure will be useful in quantifying the per-
formance of many NMR algorithms which utilize RDCs. In
addition, our ideas may also help elucidate the performance of
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Table 1. Ubiquitin Tensor Estimates
Bicelle 292 K Bicelle 298 K

Percent difference Angular Difference Percent difference Angular difference
Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
1G6J 2.3 0.2 20.8 25.1 21.8 98 12.0 5.0 28.1 30.3 16.1 96
1UBI 1.1 3.7 27.3 28.2 7.1 96 15.2 8.3 28.4 17.8 27.7 96
1UBQ 0.8 2.6 17.5 11.7 20.8 99 15.3 7.9 16.4 27.3 32.0 95
1UD7 0.2 2.2 21.2 16.5 25.8 98 14.7 6.9 16.9 16.3 7.4 99

This table demonstrates the accuracy of the first step of the NVR algorithm: tensor estimation. Columns 2 and
3 show the percentage difference for the axial and rhombic terms,Da andDr , for the four models, 1G6J, 1UBI,
1UBQ and 1UD7, versus the actual axial and rhombic terms in the bicelle medium recorded at 292 K. The
Da andDr differences are normalized by the range of the experimentally measured dipolar coupling values.
Columns 4–6 show the angular differences (in degrees) between the eigenvectors of the estimated tensors and
the eigenvectors of the actual tensors in the bicelle medium at 292 K.Szz is the director of the tensor (i.e., the
eigenvector associated with the largest eigenvalue of the tensor).Sxx andSyy are eigenvectors associated with
the second largest and smallest eigenvalue of the tensor, respectively. Columns 8–12 show the accuracy of the
tensor estimates in the bicelle medium recorded at 298 K. Columns 7 and 13 report the accuracy of the tensor
estimate as a percentile (eq. (34)).

Table 2. Streptococcal Protein G (SPG) Tensor Estimates. Tensor estimates for the B1 domain of SPG
Phage Bicelle

Percent difference Angular difference Percent difference Angular difference
Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
1GB1 0.6 6.0 26.8 23.3 21.4 97 2.4 6.6 17.9 20.5 22.3 98
2GB1 0.2 0.5 26.8 23.3 21.4 97 1.7 10.3 17.9 20.5 22.3 98
1PGB 0.6 6.0 23.8 24.5 28.8 97 2.4 6.6 15.2 29.3 25.8 96

Table 3. Lysozyme Tensor Estimates
5% Bicelle 7.5% Bicelle

Percent difference Angular difference Percent difference Angular difference
Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
193L 1.5 0.1 16.7 6.7 16.7 99 8.8 8.7 38.6 49.0 33.2 85
1AKI 2.3 0.5 13.2 10.6 8.5 99 10.0 9.3 23.2 51.0 45.2 81
1AZF 1.7 0.5 7.6 7.3 5.6 99 9.5 8.5 31.2 29.6 11.0 95
1BGI 1.2 0.7 30.0 8.5 29.8 96 8.9 9.4 24.6 43.8 35.7 89
1H87 2.1 0.2 26.2 29.9 34.2 94 9.9 8.6 23.8 15.3 25.8 97
1LSC 1.7 0.4 16.1 20.8 22.8 98 8.9 8.5 12.2 12.0 11.6 99
1LSE 1.7 0.4 12.6 49.2 44.5 83 9.5 8.3 29.2 48.2 42.1 84
1LYZ 9.8 5.0 10.7 21.4 18.5 99 18.9 8.5 21.3 21.0 24.1 98
2LYZ 3.5 1.8 20.8 16.2 16.2 99 11.56 8.3 23.8 25.0 7.5 98
3LYZ 4.3 2.4 20.0 31.4 25.2 96 12.7 8.0 27.8 38.1 4.4 96
4LYZ 3.1 2.3 24.0 9.3 24.0 98 12.6 8.6 12.7 14.5 17.7 99
5LYZ 3.1 2.3 23.9 9.3 24.0 98 12.6 8.6 12.7 14.5 17.7 99
6LYZ 3.0 0.7 15.7 16.8 16.8 99 11.0 8.6 26.6 37.3 46.0 87

other rotation-based algorithms in structural biology, compu-
tational chemistry, and drug design, by quantifying the error
of orientations and rotations of chemical bonds, domains, pro-
teins, and ligands.

In closing, we make an observation about our final result,
and consider future possibilities for investigation. Suppose
that the errors in angles between two Saupe matrices are
roughly equal. That is, supposeα = �(x1, x2) = �(z1, z2). In
this case, we note that a Taylor expansion of eq. (34) isO(α3)

for small angles alpha. As a result, our percentile (35) con-

verges very rapidly to unity, when the angular errors become
small.

Finally, we note there are other approaches to comparing
Saupe matrices that are likely to be useful. One approach is to
assume a uniform distribution of chemical bond orientations,
and then to compare the distribution of RDC values generated
by each Saupe matrix. For example, one could imagine per-
forming a simple RMSD comparison, or a more sophisticated
Hausdorff-based comparison (Huttenlocher and Kedem 1990;
Donald, Kapur, and Mundy 1992). Even beyond that, there
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Table 4. Ubiquitin Tensor Improvements
Bicelle 292 K Bicelle 298 K

Percent difference Angular difference Percent difference Angular difference
Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
1G6J 0 0.6 0.2 0.3 0.2 100 0 0 0.2 0.2 0.1 100
1UBI 0.1 0.2 2.3 2.4 0.6 100 0 0 0.2 0.2 0.1 100
1UBQ 0 0 0 0 0 100 0 0 0 0 0 100
1UD7 0 0.1 0.5 0.2 0.5 100 0 0 0.7 0.9 0.6 100

The accuracies of the final tensor estimates, after NVR has completed the resonance assignment phase. The
accuracy is improved from the initial tensor estimates (see Table 1).

Table 5. SPG Tensor Improvements
Phage Bicelle

Percent difference Angular difference Percent difference Angular difference
Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
1GB1 0 0 0 0 0 100 0 0 0 0 0 100
2GB1 0 0 0 0 0 100 0 0 0 0 0 100
1PGB 0 0 0 0 0 100 0 0 0 0 0 100

The accuracies of the final tensor estimates, after NVR has completed the resonance assignment phase. The
accuracy is improved from the initial tensor estimates (see Table 2).

Table 6. Lysozyme Tensor Improvements
5% Bicelle 7.5% Bicelle

Percent difference Angular difference Percent difference Angular difference
Model Da Dr Szz Sxx Syy Percentile Da Dr Szz Sxx Syy Percentile
193L 0 0 0 0 0 100 0 0 0 0 0 100
1AKI 0 0 0 0 0 100 0 0 0 0 0 100
1AZF 0 0 0 0 0 100 0 0 0 0 0 100
1BGI 0 0 0 0 0 100 0 0 0 0 0 100
1H87 0 0 0 0 0 100 0 0 0 0 0 100
1LSC 0.1 0.1 0 0.1 0.1 100 0 0.1 0 0 0 100
1LSE 0 0 0 0 0 100 0 0 0 0 0 100
1LYZ 0 0 0 0 0 100 0 0 0 0 0 100
2LYZ 0 0 0 0 0 100 0 0 0 0 0 100
3LYZ 0 0 0 0 0 100 0 0 0 0 0 100
4LYZ 0 0 0 0 0 100 0 0 0 0 0 100
5LYZ 0 0 0 0 0 100 0 0 0 0 0 100
6LYZ 1.5 3.3 0.7 1.2 1.0 100 1.9 5.8 0.8 5.3 5.2 100

The accuracies of the final tensor estimates, after NVR has completed the resonance assignment phase. The
accuracy is improved from the initial tensor estimates (see Table 3).

may be comparison methods that are based on the geometry
of the protein in question, and may include physical effects
such as flexibility and dynamics. It may then be possible for a
probability measure to be defined for comparing eigenvalues
in addition to our method for comparing eigenvectors.

Appendix A: Proof that the Frame-Axis–Angle
Representation is Isotropically Uniform

In this appendix, we discuss and prove that the FAA represen-
tation is isotropically uniform. Before we begin, it is worth-
while to describe some incorrect intuition.As noted by Diaco-
nis and Shahshahani (1999) and Mitchell (2004), a common

error in choosing an isotropically uniform parameterization
of rotations is to use the conventional (canonical) axis–angle
representation of rotations (Definition 5). For the axis–angle,
a uniform distribution over the parametersv over the sphere
S2, and the unit circleθ ∈ [0, 2π), will not induce a rotation-
ally symmetric distribution over rotations. Superficially, this
geometric construction appears to be rotationally symmetric;
however, it does not respect the detailed group structure of ro-
tations. As noted by Kendall and Moran (1963) and Diaconis
and Shahshahani (1999), the distribution overθ should not be
uniform, but in fact, proportional to sin2(θ).

We begin with a brief discussion about the intuition be-
hind the FAA representation. The intuitive motivation is that
a rotationally isotropic parameterization must, by definition,
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Table 7. Accuracy

PDB ID Exp. Method Accuracy
1G6J (Babu, Flynn, and Wand 2001) NMR 97

1UBI (Ramage et al. 1994) X-ray (1.8 Å) 92
1UBQ (Vijay-Kumar, Bugg, and Cook 1987) X-ray (1.8 Å) 100

1UD7 (Johnson et al. 1999) NMR 93

(A) Ubiquitin

PDB ID Exp. Method Accuracy

193L (Vaney et al. 1996) X-ray (1.3 Å) 100%
1AKI (Artymiuk et al. 1982) X-ray (1.5 Å) 100%

1AZF (Lim et al. 1998) X-ray (1.8 Å) 100%
1BGI (Oki et al. 1999) X-ray (1.7 Å) 100%

1H87 (Girard et al. 2001) X-ray (1.7 Å) 100%
1LSC (Kurinov and Harrison 1995) X-ray (1.7 Å) 98%
1LSE (Kurinov and Harrison 1995) X-ray (1.7 Å) 100%

(C) Lysozyme

PDB ID Exp. Method Accuracy
1GB1 (Gronenborn et al.

1991) NMR 100%
2GB1 (Gronenborn et al.

1991) NMR 100%
1PGB (Gallagher et al.

1994) X-ray (1.92 Å) 100%

(B) SPG

PDB ID Exp. Method Accuracy
1LYZ (Diamond 1974) X-ray (2.0 Å) 100%
2LYZ (Diamond 1974) X-ray (2.0 Å) 100%
3LYZ (Diamond 1974) X-ray (2.0 Å) 100%
4LYZ (Diamond 1974) X-ray (2.0 Å) 100%
5LYZ (Diamond 1974) X-ray (2.0 Å) 100%
6LYZ (Diamond 1974) X-ray (2.0 Å) 97%

(D) Lysozyme (continued)

(A) NVR achieves an accuracy of 92–100% on the four ubiquitin models. The structure 1D3Z (Cornilescu et al. 1998) is
the only published structure of ubiquitin to have been refined against RDCs. The RDCs used in Cornilescu et al. (1998)
have been published and were used in each of the four NVR trials. 1G6J, 1UBI, and 1UBQ have 100% sequence identity
to 1D3Z. 1UD7 is a mutant form of human ubiquitin. As such, it demonstrates the effectiveness of NVR when the
model is a close homolog of the target protein. (B)–(D) The RDCs for the B1 domain of SPG (Kuszewski, Gronenborn,
and Clore 1999) and hen lysozyme (Schwalbe et al. 2001) were obtained from the PDB. NOEs and amide exchange
data were extracted from their associated restraints files. NVR achieves an accuracy of 100% (Table 7B) and 97–100%
(Tables 7C and 7D), respectively.

place thez-axis uniformly over the unit sphere. Then, for a
given placement of thez-axis, thex-axis must be uniformly
distributed in a unit circle perpendicular to the new position
of thez-axis. The idea for this intuition is a symmetry argu-
ment. If the distribution ofx is not uniform over the circle, it
seems unlikely that the parameterization is isotropically uni-
form, because it seems not to be rotationally symmetric about
the new position of thez-axis. While this intuition is helpful,
it is obviously not a proof.

In the proof, we will proceed in two steps. First, we show
that a uniform probability distribution over the FAA param-
eters induces a distribution over frames which is rotationally
symmetric. To prove this, we note that the FAA representa-
tion is a uniform parameterization of the subgroup method
(Diaconis and Shahshahani 1999). Secondly, we show that
a rotationally symmetric distribution of frames will random-
ize any unit vector so that it (the vector) becomes uniformly
distributed over the unit sphere. Together, these two steps
show that the FAA representation of rotations is isotropically
uniform.

LEMMA 1. Consider the FAA parameterization of orien-
tations. Let(v, θ) be the variables of the parameterization,
wherev is a unit vector, andθ is an angle in the range[0, 2π).
Let P1(v) be a uniform distribution over the unit sphereS2.
LetP2(θ) be a uniform distribution over the unit circleS1 such
thatθ ∈ [0, 2π).

Let P(v, θ) = P1(v)P2(θ) be the probability distribution
which is uniform over the parameters of FAA.

We claim thatP(v, θ) induces a distribution over orienta-
tions(v, θ) which is rotationally symmetric.

Proof. According to the subgroup method (Diaconis and
Shahshahani 1999), a rotationally symmetric probability dis-
tribution over rotations may be chosen as follows. First, per-
form a random rotation about thez-axis which is uniform over
all possible angles in[0, 2π). Secondly, rotate thez-axis to
a random point on the unit sphere, in such a way that thez-
axis is uniformly distributed over the sphere. For details and
the proof, we refer the reader to Diaconis and Shahshahani
(1999). The subgroup method generates a probability distri-
bution over rotations, which in turn induces a probability dis-
tribution over the parameters of the FAA representation. We
argue that the induced distribution is uniform over the FAA
parameters.

Let Rz(θ) = the rotation around thez-axis byθ degrees.

Let R(n) = the rotation, as specified by the subgroup
method, which rotates thez-axis into the unit vectorn. For our
proof here, the exact details ofR(n) are unimportant, except
for the fact thatR(n) is a fixed function ofn.

Let R(θ, n) = R(n)Rz(θ) be the rotation represented by
the subgroup method.
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According to the subgroup method, a choice ofn which is
uniform over the unit sphere, and a choice ofθ which is uni-
form over[0, 2π) induces a rotationally symmetric distribu-
tion over rotations (in the language of group theory, it induces
a probability distribution which respects the Haar measure).

Notice that in the subgroup method, the rotation of angleθ

is performed first, and then the placement of thez-axis along
n is performed afterwards. This is the reverse order from our
FAA representation, where we first place thez-axis alongv
first, and then rotate byθ degrees aroundv afterwards. In
general, rotations do not commute. What we would like to do,
then, is to rewrite the subgroup rotationR(θ, n) = R(n)Rz(θ)

in a form whereR(n) occurs first, and then is followed by a
new rotation which takes the place ofRz(θ).

Consider a rotation aboutn by θ degrees. Given thatR(n)

rotates thez-axis ton, we can think ofR(n) as a change of
basis. Using the change of basis, we know the following.

Let Rn(θ) = A rotation around the axisn by θ degrees. (38)

Rn(θ) = R(n)Rz(θ)R−1(n) (39)

Rn(θ)R(n) = R(n)Rz(θ) (40)

Rn(θ)R(n) = R(θ, n). (41)

We now see that the subgroup method can also be thought
of as placing thez-axis alongn first, and then performing a
rotation aboutn by θ degrees. This is very close to the defini-
tion of the of the FAA representation (Definition 6); however,
it differs in thatθ in FAA refers to an absolute orientation,
while θ in Rn(θ) refers to a rotation.

Given an arbitrary pair(θ1, n), consider the images of the
x- andz-axis after the rotationR(θ1, n). By construction, the
z-axis will end up pointing alongn. As for thex-axis, it must
remain perpendicular to thez-axis. Ifθ1 varies uniformly over
[0, 2π), then the image of thex-axis will be a point that varies
uniformly over a unit circle that is in the plane containing the
origin, and perpendicular to the image of thez-axis. This is
easy to see from eq. (41).

LetQ(v, θ2)be the frame corresponding to the FAA param-
etersv andθ2. We want to consider the mapping fromR(θ1, n)

to Q(v, θ2), where they both represent the same frame (rota-
tion). By construction, we can see that both mappings move
thez-axis to the corresponding input vector. Identical rotations
move thez-axis to the same location, we must havev = n.
From equation (38), we can conclude thatθ2 = θ1 + θ0(n),
whereθ0(n) is a constant dependent onn. One can see that
θ0(n) depends on both the specific details ofR(n), and also
the arbitrary choices ofθ = 0 for the FAA representation (see
Definition 6 and its footnote).

As a result, ifn is uniformly distributed over the unit sphere,
v will also be uniformly distributed over the unit sphere. Fur-
thermore, eq. (41) tells us that for everyn, a uniform distribu-
tion overθ1 will induce a uniform distribution overθ2. There-
fore, the rotationally symmetric distribution generated by the
subgroup method will induce a uniform distribution over the

parameters of the FAA representation, namelyP(v, θ) as de-
fined above. The FAA representation is an onto and one-to-
one mapping from parameters to rotations (see Appendix B).
Therefore, the converse is also true: a uniform distribution
of FAA parameters,P(v, θ), induces a distribution over rota-
tions that is rotationally symmetric. �
LEMMA 2. Given:
1. A rotationally symmetric distributionP over all possible
frames.
2. An arbitrary unit vectorv.

Let U be an arbitrary set of unit vectors (conceptually, this is
a patch of the unit sphere).
Let Q(U) = probability thatHv will fall inside U if we pick
a frameH according to the distributionP .

We claim thatQ(U) is rotationally symmetric, in the sense
thatQ(U) = Q(RU) for all R whereR is an arbitrary rota-
tion, andRU is the set of unit vectors generated by rotating
each element ofU by R.

Proof. We prove this lemma by directly showing that for
all sets of unit vectors,U , and for all rotationsR, that
Q(U) = Q(RU).

Let H1 be the set of frames which transformv into U , i.e.,
H1v = U .
Let H2 be the set of frames which transformv into RU , i.e.,
H2v = RU .

We now show thatRH1 is equal toH2.
We know thatH1v = U . So, we haveRH1v = RU . There-

fore, we know thatRH1 ⊆ H2 becauseH2 is defined as the
set of all frames which transformv into RU .

Similarly, H2v = RU tells us thatR−1H2v = U . So we
know thatR−1H2 ⊆ H1 becauseH1 is defined as the set of all
frames which transformv into U . Rotations are a one-to-one
and onto function from frames to frames, so we can conclude
thatH2 ⊆ RH1.

SinceRH1 ⊆ H2 andH2 ⊆ RH1, we know thatRH1 = H2.
By rotational symmetry,P(H1) = P(RH1), which in turn

means thatP(H1) = P(H2). SinceH1 mapsv into U , we
have P(H1) = Q(U). Similarly, P(H2) = Q(RU). To-
gether, these imply thatQ(U) = Q(RU). Therefore,Q is
rotationally symmetric. The only rotationally symmetric dis-
tribution over unit vectors is the uniform distribution over the
unit sphere. �

THEOREM2. The FAA parameterization of frames is isotrop-
ically uniform.

Proof. From Lemma 1, we know that a uniform distribution
over the parameters of the FAA representation induces a prob-
ability distribution over frames which is rotationally symmet-
ric. Thus, we satisfy the second condition of Definition 9.
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From Lemma 2, we know that all rotationally symmetric
distributions of rotations will randomize any unit vector over
the unit sphere in a uniform manner.

Together, we can conclude that a uniform distribution over
the parameters of the FAA representation will randomize any
unit vector so that it is uniformly distributed over the sphere.
Thus, we satisfy the first condition of Definition 9. �

Appendix B: Technical Notes on the FAA
Representation

Here we prove two theorems. The first is that the FAA repre-
sentation is a bijection betweenS2 × S1 and frames. Because
S2×S1 andSO(3) have different homology types, they cannot
be homeomorphic (Munkres 1984). As a result, any mapping
between them cannot simultaneously satisfy all of the follow-
ing conditions (definition of homeomorphic):

(1) the mapping is continuous;

(2) the mapping’s inverse is continuous;

(3) the mapping is one-to-one;

(4) the mapping is onto.

In our case, we prove 3 and 4. So it must be that we cannot
satisfy 1 and/or 2. In the second theorem, we give a direct
proof that the FAA representation is not continuous.

THEOREM 3. The FAA representation is a one-to-one and
onto mapping betweenS2 × S1 and frames.

Proof. To prove that the FAA representation is onto, we show
that given any frameH = (x, y, z), there is a unique pair
(v, θ) which represents that frame. First, observe thatv is
always along thez-axis, sov = z is uniquely determined.
Next, note thatx is a unit vector which is perpendicular to
z. Therefore,x lies on a unit circle perpendicular toz. This,
in turn, uniquely specifies the angleθ which represents the
direction of thex-axis.

Similarly, given an axis and an angle(v, θ), the correspond-
ing frame is uniquely determined. Therefore the mapping is
one-to-one. �

Next, we show that the FAA representation is not
continuous.

THEOREM4. The FAA representation is not continuous.

Proof. Our proof will be by contradiction. We will show that
if the axis–angle representation were continuous, then it is
possible to “continuously comb a sphere with tangent hairs”.
Since there is a theorem from differential topology (Rotman

1988; Kinsey 1991) showing that this is impossible,4 it follows
that FAA is not a continuous representation of orientations.

Suppose we are given an FAA representationH(v, θ) =
(x(v, θ), y(v, θ), z(v, θ)).As noted in a footnote earlier, there
are an infinite number of FAA representations of orientations,
which differ only in their choice ofθ = 0 for eachv. From
H, we construct a set of tangent vectors on the unit sphere
S2. Consider the functionh(v) = x(v, 0). Our functionh
is a restricted version of our full functionH. So if h is not
continuous, thenH is not continuous.

Our functionh(v) is a mapping fromS2 to unit vectors.
We know thatv = z(v, θ) by definition of the FAA represen-
tation. We also know thatx(v, θ) is perpendicular toz(v, θ)

becauseH is a mapping to valid frames. Therefore,h(v) is
perpendicular tov, which in turn meansh(v) is tangent to the
sphere atv.

So our functionh specifies a complete set of “tangent hairs”
on the unit sphere. Therefore, by the above-mentioned theo-
rem from topology, we conclude thath cannot be continuous.
Therefore,H cannot be continuous. So any FAA representa-
tion of orientations must be discontinuous. �

One might wonder if the discontinuities of the FAA repre-
sentation are a matter of concern. For example, the disconti-
nuities may be localized to some parts ofS2×S1, thus making
the discontinuities themselves non-isotropic. While this may
be true, it is not relevant to our discussion.All we care about is
that a uniform distribution over the parameters of FAA induces
a distribution of orientations that is isotropically uniform.

A simple analogy would be a parameterization of the unit
circle by the interval[0, 1] which is uniform, but not contin-
uous. For example,t ∈ [0, 1/2] becomes mapped to 2πt and
t ∈ [1/2, 1] becomes mapped to 2π((3/2) − t). Although
this mapping is not continuous, a uniform distribution over
t ∈ [0, 1] induces a uniform distribution over the unit circle.

Appendix C: Relationships Between
Representations of Rotations

We consider the relationship between several different rep-
resentations of rotations,SO(3). Specifically, we shall look
at the representations orthogonal image, frames, quaternions,
axis–angle, and the FAA representation. The relationships are
summarized by eq. (52).

We begin by showing thatSO(3), orthogonal image, and
frames are isomorphic to each other. First, considerSO(3)

and frames. According to Definition 4, a frame is specified by
an ordered triple of unit vectors(x, y, z) such thatx × y =
z. We note that one can convert betweenSO(3) and frames
trivially; given a rotation matrixR in SO(3), the columns
of R are the unit vectors of the frame that corresponds to

4. This result from topology is colloquially known as the Hairy Ball Theorem
and is a direct consequence of the famous Brouwer Fixed Point Theorem. See
Rotman (1988) and Kinsey (1991).
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R. Similarly, given a frame,F , the unit vectors ofF are the
columns of the corresponding rotation matrix inSO(3). For
frames to be isomorphic toSO(3), we need to define the
group operator. Naturally, we define multiplication of frames
to be the equivalent operation of matrix multiplication on the
corresponding matrices. In this way, we have a one-to-one and
onto mapping between frames andSO(3) which preserves the
group operations on both sides.

Next, we consider the orthogonal image representation of
rotations (Mandell et al. 2001; Mitchell 2004). LetR be a
rotation, and lety andz be they- andz-axis, respectively. The
orthogonal image representation is based on the fact thatR is
fully specified by the image of they- andz-axis, namelyRy
andRz. The orthogonal image representation is an ordered
pair of vectors, which represent the image of they- andz-axis
under the rotation.

If we work in the coordinate frame ofy and z, then
y = [0 1 0]t andz = [0 0 1]t . Let M be the matrix inSO(3)

which represents our rotationR. We now see thatRy andRz
are the second and third columns ofM. In fact, the orthogo-
nal image is simply a more compact representation of frames.
Frames have a redundant amount of information; given any
two vectors of a frame, the third can be uniquely determined
by the right-hand rulex×y = z. The orthogonal image repre-
sentation is similar to frames, except with one vector removed.
So if we define the group operator on orthogonal images in
the analogous fashion, we see that the orthogonal image rep-
resentation is isomorphic to frames and thusSO(3).

Now that we have shownSO(3), frames, and the orthog-
onal image representation to be isomorphic to each other, we
consider quaternions.We begin with the mapping from quater-
nions toSO(3) (Salamin 1979).

Let q = (q0, q1, q2, q3) be a quaternion with scalar

partq0 and vector partq1, q2, q3 (42)

Let R(q) = the matrix inSO(3) corresponding to

quaternionq. (43)

R(q) =[
q2

0 + q2
1 − q2

2 − q2
3 2(−q0q3 + q1q2) 2(q0q2 + q1q3)

2(q0q3 + q2q1) q2
0 − q2

1 + q2
2 − q2

3 2(−q0q1 + q2q3)

2(−q0q2 + q3q1) 2(q0q1 + q3q2) q2
0 − q2

1 − q2
2 + q2

3

]
.

(44)

As one can see, the mapping from quaterions toSO(3) is
continuous in the sense that each component ofR is a contin-
uous function ofq. One can also observe thatq and−q map
to the same matrix inSO(3). It is well known that quaternions
are a two-to-one homomorphism ofSO(3) (Salamin 1979).

Another common representation of rotations is the con-
ventional (classical/canonical) axis–angle, where one speci-
fies the axis of the rotation by a unit vector, and the angle is
the amount of rotation around the axis (see Definition 5). The
mapping from axis angle to quaternions is

Let T (n, θ) = axis–angle representation of a rotation

with axisn and angleθ . (45)

Let q(θ, n) = quaternion corresponding toT (n, θ). (46)

q(θ, n) = cos(θ/2) + sin(θ/2)n. (47)

Notice that the mapping from axis–angle to quaternions is
continuous. Furthermore, if we restrictθ to be in the range
[0, 2π), then the mapping is almost one-to-one. The mapping
is one-to-one except whenθ = 0.

THEOREM 5. q(θ, n) is a one-to-one mapping forθ ∈
(0, 2π), and it is many-to-one whenθ = 0.

Proof.

CASE 1: θ = 0.

Whenθ = 0, the mapping is many-to-one because for any unit
vectorn, we will map(n, 0) to the quaternion[1, 0, 0, 0].
CASE 2:θ ∈ (0, 2π).
Let (θ1, n1) and(θ2, n2) be two axis–angle representations of
two rotations. To show one-to-one, we need

q(θ1, n1) = q(θ2, n2) ⇐⇒ θ1 = θ2 andn1 = n2. (48)

The⇐ direction is trivial.
We show the⇒ direction. Assume thatq(θ1, n1) = q(θ2, n2).

cos(θ1/2) + sin(θ/2)n1 = cos(θ2/2) + sin(θ/2)n2 (49)

cos(θ1/2) = cos(θ2/2) (50)

sin(θ1/2)n1 = sin(θ2/2)n2. (51)

From eq. (50) and the fact thatθ1, θ2 ∈ (0, 2π), we know
θ1 = θ2 because cos(θ1/2) is invertible in this range. From
eq. (51) and the fact thatθ1 = θ2 �= 0, we know that
sin(θ1/2) = sin(θ2/2) �= 0. So we must haven1 = n2. �
DEFINITION 13. We say a mapping isnearly one-to-oneif
and only if it is one-to-one everywhere, except for a set of
measure zero in its range and also for a set of measure zero in
its domain.

DEFINITION 14. We say a mapping isnearly two-to-oneif
and only if it is two-to-one everywhere, except for a set of
measure zero in its range and also for a set of measure zero in
its domain.

So, the angle-axis representation is nearly one-to-one with
quaternions, and nearly two-to-one withSO(3). It is well
known that for the axis–angle representation of rotations,
(θ, n) and(2π − θ, −n) represent the same rotation.

Finally, we consider the FAA representation. We refer the
reader to Appendix B to show that the mapping from the FAA
representation toSO(3) is one-to-one, but discontinuous. We
summarize the relationships in eq. (52).
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Quaternions
2−1,homomorphism−−−−−−−−−−−−−→

continuous
SO(3)

nearly 1−1

�

continous

∥
∥
∥ isomorphic

Axis-Angle Rotations
nearly 2−1−−−−−−−→
continuous

Orthogonal Image
∥
∥
∥ isomorphic

Axis-Angle Frames
1−1,bijection−−−−−−−−−→
discontinuous

Frames

(52)

We close by noting a few of the representations which are
isotropically uniform. For quaternions, a uniform parameteri-
zation of the three sphereS3 will sample rotations in a manner
which is isotropically uniform (Salamin 1972). As shown in
this paper, the FAA representation is isotropically uniform.
However, the conventional (canonical) axis–angle represen-
tation of rotations is not isotropically uniform (see the end of
Appendix A). The orthogonal image method is also known to
be isotropically uniform (Mandell et al. 2001; Mitchell 2004)
(see equation 52).
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