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Abstract can be used for any RDC-based algorithm to bound the accuracy of
the estimated alignment tensors. Furthermore, they could also be
High-throughput nuclear magnetic resonance (NMR) structural biused in X-ray crystallography or molecular docking to quantitate

ology and NMR structural genomics pose a fascinating set of ggre accuracy of calculated rotations of proteins, protein domains,
ometric challenges. A key bottleneck in NMR structural biology i§cleic acids. or small molecules.

the resonance assignment problem. We seek to accelerate protein

NMR resonance assignment and structure determination by expld§EY WORDS—S O (3), rotations, subgroup method, orthog-
ing a priori structural information. In particular, a method known asonal image, alignment tensor, residual dipolar couplings,
nuclear vector replacement (NVR) has been proposed as a mett®dupe matrix, NMR structural biology

for solving the assignment problem given a priori structural infor- .
mation. Among several different types of input data, NVR uses¥BBREVIATIONS USED—NMR, nuclear magnetic reso-

particular type of NMR data known as residual dipolar couplingd@nce; NVR, nuclear vector replacement; RDC, residual dipo-
(RDCs). The basic physics of RDCs tells us that the data should l&F coupling; 3D, three-dimensional; MR, molecular replace-
explainable by a structural model and set of parameters containgdent; SAR, structure activity relation; DOF, degrees of free-
within the “Saupe alignment tensor”. dom; nt., nucleotidesSQ(3), special orthogonal (rotation)

In the NVR algorithm, one estimates the Saupe alignment tensgpoup in 3D;S?, the unit circle;S?, the unit spheres?, the unit
and then proceeds to refine those estimates. We would like to quan8fsphere; FAA, frame axis angle representation of rotations.
the accuracy of such estimates, where we compare the estimated
Saupe matrix to_ the F:orrect Saype ma;nx. In this work, we propo§f. Introduction
a way to quantify this comparison. Given a correct Saupe matriX

and an.gstumated Saupe matrix, we compute an upper bound on methe field of structural biology, nuclear magnetic resonance
probability that arandomly rotated Saupe tensor would have an errctrNMR) is a powerful tool for studying the structure of pro-
smaller than the estimated Saupe matrix. This has the advantagq gf,g ‘5q \ell as elucidating the interaction of proteins with
being a quantified upper bound, which also has a clear |nterpretat|08ther molecules. Typically, the results of protein solution-
in terms of geometry and probability. While the specific appllcatlogtate NMR experiments yield geometric measurements such
of our rotation probability results is given to NVR, our novel methodgIS inter-proton distances, dihedral bond angles, and global
_ . orientations of bonds. While such information is extremely
\T/:)'Ie ;Te,\rlgagfgallzggf;g?;f&:&?;’ggg ggsfg‘g_cf& useful, NMR data are initially unassigned. For example, we
DOI: 10.1177/0278364905050351 ' are typically given a protein with a known sequence of amino
©2005 Sage Publications acids, which we simply index sequentially. NMR data will
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give a set of constraints (e.qg., inter-proton distances), but willith a three-dimensional (3D) rotation, called the principle
reference the amino acids with a different and arbitrary irerder frame (POF). In this paper we present a novel and rig-
dexing scheme (based on nuclear resonance frequency). Bineus method for bounding the accuracy of rotation matrices.
process of determining the one-to-one mapping from one ifthis general method is then applied to quantitate the accuracy
dexing scheme to the other is known as “assignment”. Asf POFs.
signment is the solution to an inverse problem, namely, the Specifically, in the NVR algorithm, one estimates the
mapping ofk-tuples of resonance frequencies to kheiples Saupe alignment tensors and then proceeds to refine those
of interacting NMR-active nuclei (Zimmerman et al. 1997gstimates. We would like to quantify the accuracy of such es-
Bailey-Kellogg et al. 2000; Al-Hashimi and Patel 2002; Hustimates, where we compare the estimated Saupe matrix to the
Propmers, and Briischweiler 2002). The assignment problerarrect Saupe matrix. We propose a novel way to quantify this
is perhaps the critical bottleneck for the interpretation ancbmparison. Given a correct Saupe matrix and an estimated
exploitation of NMR data. It is desirable to discover fasteGaupe matrix, we compute an upper bound on the probability
methods for solving it, as well as to exploit any formal inthat a randomly-rotated Saupe tensor would have a geometric
sights about the combinatorial complexity and structure arror smaller than the estimated Saupe matrix.
the problem. In Section 2, we first give a brief introduction to RDCs.
Recently, a number of researchers have sought to accel€nen, in Section 4.1, we explain our method for compar-
ate protein NMR assignment and structure determination liyg Saupe alignment tensors. Finally, we present some results
exploiting a priori structural information. By analogy, rapidwhich quantify the accuracy of the NVR Saupe matrix estima-
structure determination is facilitated in X-ray crystallogration. While the specific application of our rotation probability
phy by the molecular replacement (MR) technique (Rossmaesults is given to NVR, these novel methods can be used for
and Blow 1962) for solving the crystallographic phase protany RDC-based algorithm to bound the accuracy of the es-
lem. The corresponding bottleneckin NMR structural biologyimated alignment tensors. Furthermore, they could also be
is the resonance assignment problem. One would hope thisted in X-ray crystallography or molecular docking to quan-
knowing a structural model ahead of time could expedite atitate the accuracy of calculated rotations of proteins, protein
signment. Moreover, even when the structure of a protein hdemains, nucleic acids, or small molecules.
already been determined by X-ray crystallography or compu-
tational homology modeling, NMR a§3|gnm_ents are.ve.lluabﬁ Background: Brief Introduction to Residual
because NMR can be used to probe: protein—protein interag- .
tions (Fiaux et al. 2002), via chemical shift mapping (Cheal[‘liIpOIar Couplings

etal. 1993); protein—ligand binding, via structure activity rela.‘l_?DCs are a quantum mechanical effect arising from the

tion by NMR (Shuker et al, 1996) or line-broadening anaIySIaipole—dipole interaction of nuclear spins. While the detailed

(Fejzo et al. 1999); and dynamics, for example via nuclearh sics are not important for our problem, we briefly explain
spin relaxation analysis (Palmer 1997). bhy P P ' y exp

.the formalism of RDCs.

To enable structure-based resonance assignment, the ide .
: . . ; DCs are experimentally measured real values that may
of correlating unassigned experimentally measured re5|dtbaé .

. g . interpreted as constraints on the orientation of a chemical
dipolar couplings (RDCs; Tjandra and Bax 1997; Losoncznl d V\f) lain this f lIv- follow Wed Rohl
; . . ond. We explain this formally; we follow Wedemeyer, Rohl,
et al. 1999) with bond vector orientations from a known .
. - nd Scheraga (2002) and Losonczi et al. (1999).
structure was first proposed by Al-Hashimi and Patel (200 Let n be number of residues in the protein. hetbe a
and subsequently demonstrated in Al-Hashimi et al. (2002 - b '

. . . l}éﬂt column vector ifR® which represents the orientation of
who considered permutations of assignments for RNA, an . . . ;
a chemical bond1l < i < n). (We will consider only one

Hus, Propmers, and Briischweiler (2002), who assignedap% lemical bond per residue.) Let the Saupe MatEhbe a
tein from a known structure using bipartite matching. Later3 +« 3 matrix which is s -

ymmetric and traceless.
we proposed a method known as nuclear vector replacemenRNe define the RDC to be a quadratic form over the unit
(NVR; Langmead et al. 2003, 2004; Langmead and Donalsdphere
2004), which builds on these works and offers some improve*
ments in terms of isotopic labeling, spectrometer time, ac- D, = D(v;) = kV'Sv;, (1)
curacy, robustness and computational complexity. Within the '
NVR algorithm (as well as within almost any RDC-basegyhere« is a constant based on physical constants and the
algorithm) it becomes necessary to interpret the NMR dat/namics of the protein in solution (Saupe 1968; Losonczi
known as RDCs. According to basic physics, the RDC dat al. 1999; Wedemeyer, Rohl, and Scheraga 2002).
should be explained by the structure of the protein, as well as Suppose we are givéandD;, then eq. (1) is a constraint
several parameters represented by the Saupe alignmenttens®ithe possible orientations of. In a typical RDC experi-
As is well known (Losonczi et al. 1999) the alignment tenSOﬂhent,D’, are measured; however, battand the Saupe maitrix

may be represented by specifying its eigenvalues, togeth®hre unknown. When computir§ it is useful to note tha®
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has only five degrees of freedom because itis real, symmetric, For the eigenvectors, the angular errors are simple to un-

and traceless. derstand geometrically. However, it is not clear how to judge
Before continuing, it is worth noting that RDCs and thavhen the angular errors may be considered “small”. There are

Saupe matrix are of considerable interest for research in strigeveral ways to do this, such as comparing the angular errors

tural biology. Two of the dominant problems in NMR struc-to an angular threshold set by, say, the required accuracy for

tural biochemistry are the assignment problem, and structulleug design, or perhaps the angular changes from protein dy-

determination or refinement. As mentioned in the introduaiamics. While many of these methods are useful, we propose

tion, thereisinterestin using RDCs to perform structure-basednew measure of eigenvector accuracy which is purely geo-

resonance assignment (Tjandra and Bax 1997; Losonczi etraktrical, and contains an intuitive notion of “how difficult” it

1999; Al-Hashimi and Patel 2002; Al-Hashimi et al. 2002js to achieve a given angular accuracy. We see our method as

Hus, Propmers, and Briischweiler 2002; Langmead et a.new measure which provides some additional insight, and

2003, 2004). In addition, RDCs have been used as geometniat as a replacement of other measures.

restraints to determine and/or refine the structure of proteins

(Clore, Gronenborn, and Bax 1998; Degalio, Kontaxis, and

Bax 2000; Fowler et al. 2000; Andrec, Du, and Levy 20014. M ethods

Tian, Valafar, and Prestegard 2001; Rohl and Baker 2002;

Giesen, Homans, and Brown 2003; Wang and Donald 2004)1. Percentile Measure of Saupe Eigenvector Accuracy

Because of the wide range of applications of RDCs, we b

lieve it is important to analyze and characterize the accur

of Saupe alignment tensors.

fiVe motivate our method with a simple idea: we will use proba-
aBYIity as the judge of accuracy. Given an estimated answer, and
a correct answer, we can ask whether we randomly guessed

Lo ) a solution. What is the probability that the random guess is
3. Description of Problem and Previous Work closer to the correct solution than the estimated answer? Al-

When we are give, and the corresponding (i.e., assigned§emativelyv we can asklwhat fractiqn of all possible solutions
V;, We can compute the corréGaupe matrigvia the singular aré worse than our estimated solution? _ _

value decomposition (SVD) method (Losonczi et al. 1999). To apply this idea, we need to specify two things: first, a
Our problem, then, is to quantify the comparison between tSe measure of accuracy and, secondly, the space of all so-
correct Saupe matrix, and an estimated one. We observe th#tons. For our base measure of accuracy, we will choose the
the Saupe matrix is real and symmetric; therefore, it has redfgular error between corresponding eigenvectors. Formally,
eigenvalues and orthogonal eigenvectors. In fact, the Saufyg define this as follows:

matrices are completely specified by their eigenvalues and

eigenvectors. Accordingly, our similarity measure is broken

up into two parts: a comparison of eigenvalues, and therk-8t St = correct Saupe matrix @)
comparison of eigenvectors. Let S, = estimated Saupe matrix 3)
Following standard notation (Wedemeyer, Rohl, angdet), = eigenvalues 0§, wherex; > A, > 1, ()

Scheraga 2002), we sort the eigenvectors by eigendaNes.

4 ; Letv; = eigenvectors 0§, whereS,v;, = A,v; 5
then compare eigenvalues and eigenvectors of the same rar?k. ' g 5, S Y ©)
For the eigenvalues, one can simply compute the relative bft 2, = eigenvalues o8, whereps > p, > p, (6)
ror between the estimated and correct eigenvalues. For tie#w; = eigenvectors 0§, whereS;w; = p;w; (7)

eigenvectors, one Céja_n compute thdi? angle betw:jaep each £@kL (v, w;) = the angle between the vectarsandw; (8)
rect eigenvector and its corresponding estimated eigenvectqr, .
Botﬂ of these measures arepsimplg and useful. 'Ighe eiggﬁE Lnin (Vs W) = MINCL V3, W), £(=Vis W)). ©)
values can be considered to have units of Hertz, which are

directly comparable to the resolution of the NMR spectrunDEFINITION 1. Given: a Saupe matriQ with eigenvalues
That is to say, the resolution of the NMR spectrum gives usja > y1 > ¥, and corresponding eigenvectans where
length-scale for judging the accuracy of the estimated eige@u; = y.u,. We say the eigenvectors @f aregeometrically
values. For example, if the error in the eigenvalues is muchore accurat¢han the eigenvectors 8f whens,,;, (u;, v;) <
larger than the resolution of the NMR spectrum, we would’,;,(w;, v;) for all i € {1, 2, 3}.

Judge the eigenvalues to be inaccurate. We defing,,;, as stated above, because we need to account

1. For the purposes of comparison and to quantitate the accuracy of NVRI the inversion symmetry of eigenvectors. That is; i§ an
“true” values of the alignment tensors are determined by computing the opigenvector o5, with eigenvalue, then so is-v. Also, it is

timal Saupe matrix using the correct assignments. For this paper, it is 'Worth noting that we require all the corresponding eigenvec-
important how the “correct” Saupe matrix is computed.

2. Following the convention of Wedemeyer, Rohl, and Scheraga (2002), #8r'S OfQ t_O have an_gular deviations which are smaller than
label the largest eigenvalue ashe smallest ag, and the middle as. the deviations of5, eigenvectors.
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Next, we need to specify the space of all possible sol§2) D induces a distribution over rotations that is rotationally
tions. We consider all possible rotations of a Saupe m&lrix symmetric.
and its corresponding eigenvectors. Here, we encounter two

. . ; . . ; . Intuitively, we want a way to choose a random rotation
issues. First, we want to consider all rotations in an isotropic .

. . . . whereby we mean that the rotation of a vectocreates a new
manner, so that all orientations @f are equally likely in an

. . yector,V’, which is completely randomized. In other words,
geometric sense. Secondly, we need to account for the inver:

: . il : e distribution ofv’ should be uniform over the sphere.
sion symmetry of eigenvectors: if; is an eigenvector of

oy ; o ) There are several ways to choose a parameterization
with eigenvaluey;, then so is—u;. This inversion symmetry Lo ; . -

. : AT o -~ which is isotropically uniform. For example, there is likely to
will be accounted for as a multiplicative factor within our final

. . : . be a parameterization based on quaternions. Another example

solution. In the following two sections, we formally explain. . . .

the details of how we address both issues is the orthogor)al image represgntgtmn of rotations (Mandell
' et al. 2001; Mitchell 2004), which is closely related to our

method (we discuss the connection below). For our purposes,

4.1.1. Isotropic Representations of Rotations we start with coordinate frames because they are easier to vi-

There are many representations of rotations. Some exampiilize. Frames are isomorphic to rotations, so this is simply
include Euler angles, axis—angles, and quaternions. We wigt¢hoice of representation (see Appendix C). We start with a
to choose a representation which is isotropically uniform. Eunodified axis—angle representation of frames and then, con-
ler angles are known to have singularities in their parameteteptually, we convert frames into rotations. We then show that
ization (so-called “gimbal lock” in computer graphics). As dhe modified axis—angle representation of rotations is isotrop-
result, Euler angles are clearly not an isotropically uniforri¢ally uniform. Finally, we use the geometry of the modi-

representation. In our work here, we choose a modified véted axis—angle representation to simplify some of the algebra

sion of axis—angle, and show that it is isotropic. The motivahen we compute our similarity measure for Saupe matrices.
tion for our choice is simply convenience. Because our axis—angle representation differs from the

canonical (classical) axis—angle representation of rotations,
we will define both, so that they can be compared. We will
call the new representation the frame-axis—angle (FAA) rep-
resentation, because it is more closely related to coordinate
frames. We will use the term “axis—angle” to mean the canon-
ical (classical) representation.

DEFINITION 2. Let P be a probability distribution over all
possible rotations.

Let L be an arbitrary set of rotations.

Let P(L) be the probability that we pick a rotationin if we
randomly choose according f.

Let R be an arbitrary rotation.

element ofL by R. . _ _ frame. Formally, a coordinate frame is an ordered triple of unit
Let P(RL) be the probability that we pick an rotationRL.,  yectors(x, y, z) such that the vectors are orthogonal to each
if we randomly choose according fo. other and oriented according to the right-hand raley = z.

We say that the probability distributiah is rotationally sym-

metricif and only if for all rotationsR, and for all possible DeriniTION 5. Letv be a unit vector inR3, and letd <
sets of rotationg,, thatP (L) = P(RL). [0, 277).

it is worth noting that'Ve define thgcanonical) axis—angle representation of rota-

For those familiar with group theory, ) ! ) :
a rotationally symmetric probability distribution is a speciaflonSt0 be @ mapping which takes, 6) to the rotation by

case of the Haar measure on rotations (Diaconis and Shahdifgians around the axis.
hani 1999). A Haar measure is a measure over subsets of the 6. Letub it tor iR3. and letd
group, and is invariant under group operations. In our cas EFINITION ©. Letu be a unit vector Ink", and leto. e

. ; : 2m).
our group is the space of rotations, and our group operatio . : .
are composition of rotations. e define thé=AA representation of framee be a mapping

which takes(u, 6) to the coordinate frame specified as fol-
DEFINITION 3. LetG(a, B, y) be a parameterization of ro- lows.

tations,S O (3), with parameters, 8, andy. (1) Choose the-axis to be along.

Let D(«, B, y) be a uniform probability distribution over the (2) Choose thec-axis to be perpendicular o and rotated
range of(a, 8, y). aroundu by an angle specified b§. The exact position of
Letv be a unit vector. 6 = O is arbitrany? but is considered to be a constant for each

Let F, be the distribution of unit vector§v, induced byD. choice ofu.

We sayG is isotropically uniformif and only if both of the

foIIowmg are tr;]e: . . . .. 3. As a result, the FAA representation is not unigue, but is many parame-
(1) forallv € $2, F, is the uniform distribution over the unit terizations which differ only in their specification of whete= 0 for each
spheres?; choice ofu.
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(3) Now the y-axis is uniquely determined by the require- We now claim that the FAA representation is isotropically
ments that the-axis is orthogonal to the other two axes, andiniform. The problem of how to isotropically sample rota-
that the coordinate system is right-handed. tions has been studied extensively. Our particular choice of
rggresentation is based on convenience and usefulness when

While both axis—angle and FAA use the same parameters lied t dicul bl . fs
input (a unit vector and an angle), it should be clear that axi&Ppiied to our particular problem (comparison of Saupe ma-

angle and FAA are different. In the axis—angle representatiow,ces)' We prove that our FAA representation is isotropically

both the axis and angle of the rotation are explicitly specifieétmform’ by relating it to known representations of rotations

However, in FAA, neither the axis nor the angle of rotation ig' at are rotationally symmetric. In particular, there is a closely

immediately obvious: the vector in axis—angle represents tI!:%Iated representation of rotations known as the orthogonal

axis of rotation, while in FAA it represents the new positioH'T|age representation (Mgndell_ et al. 2001; M'.tCh?" 2004).
of the z-axis. Our FAA representation is a direct parameterization of the

We note that the FAA representation is a one-to-one aﬁ)&thogor?al image representation. Th? orthogonal image rep-
onto mapping betwees? x S* and frames. For a proof see'esentation can be seen as a special case of the subgroup
Appendix B. We also note that FAA is a discontinuoijs D algorithm (Diacqnis _and Shahshahani_ 1999). Therefore, the
rameterization of frames. While this might appear to be pro AA representation’is a para_meterlzat_mn of the subgroup al-
lematic, it does not affect our proof that FAA is an isotropi onthm.. The ;ubgroup a[gorlthm p.rowdes a general way for
representation of frames (the proof is in Appendix A). HowCOmPuting ur)|for_r‘(1lyd|str|buted variables of compactgroups.
ever, we do address the discontinuities explicitly when we For so:ntg |nt'U|t.|or:, and 6}|Sket.(;h of the p;\oof thg't tZe'EAA
integrate over the parameters of the FAA representation (igé)resen ation s Isotropicaily uniform, SE€ AppendixA. For a

Section 4.1.2 and eq. (19)). For a proof that FAA is disco liscussion of some technical points about the FAA represen-
iNUOUS séé Appendi;< B ' tation, see Appendix B. In Appendix C we discuss the rela-

tionship between a few different representations of rotations,
DEFINITION 7. LetH be aframe (coordinate frame) specifiedncluding FAA, orthogonal image, and quaternions.
by (X, Y, 2).

Letv = [x, v, z] be a unit vector. TH'EOREM 1. The FAA parameterization is isotropically
We defineapplying frameH to v to be the vectov’ = Hy =  uniform.
XX+ yy +zz. Proof. See Appendix A. O

We (_jefine isotropically uniform parameterizations of EaA is an isotropic representation of frames. We now
frames in a manner analogous to rotations. connect frames to rotations, to show that FAA is an
DEFINITION 8. Let P be a probability distribution over all isotropic representation of rotations. Each rotation deter-

possible frames. mines a unique frame relative to the standard Euclidean
Let L be an arbitrary set of frames. frame([1, 0, 0], [0, 1, O, [O, O, 1]). Similarly, each frame de-
Let P(L) be the probability that we pick a frame Iy if we  termines a unique rotation representing the transformation
randomly choose according . that changes the Euclidean frame into the given frame. Note
Let R be an arbitrary rotation. that the columns of a rotation matrix are the unit vectors of
Let RL be the set of all frames generated by rotating eadts corresponding frame, and vice versa. So, this association
element ofL by R. is one-to-one and onto. In fact, frames and rotations are iso-
Let P(RL) be the probability that we pick a frame R, if  morphic (see Appendix C).

we randomly choose according B Now that we have an isotropically uniform representation

We say that the probability distributiof is rotationally sym-  of frames and rotations, we can proceed to consider orienta-
metricif and only if for all rotationsR, and for all possible tions of Saupe matrices and their eigenvectors.
sets of framed., thatP (L) = P(RL).

DEFINITION 9. Let H(a, 8, y) be a parameterization of 4.1.2. Orientations of Saupe Matrices and Eigenvectors

frames, with parametets 8, andy. We now return to our problem of how to compare eigenvectors
Let D(«, B, y) be a uniform probability distribution over the and orientations of Saupe matrices. We solve our problem in
range of(a, 8, ). three stages. First, we simplify the problem by ignoring the in-

Letv be a unit vector. version symmetry of the eigenvectors. Secondly, we approx-

Let F, be the distribution of unit vectorsjv, induced byD. imate the solution to make the algebra more tractable. Our
We sayH is isotropically uniformif and only if both of the approximation will yield a strict upper bound on the proba-
following are true: bility. Thirdly, we account for the inversion symmetry of the
(1) for allv € §?, F, is the uniform distribution ove$?; eigenvectors.

(2) D induces a distribution over frames that is rotationally Because Saupe matrices are real and symmetric, their
symmetric. eigenvectors are orthogonal. The orthogonal eigenvectors can
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be used to form a coordinate system (frame). For choosing At this point, we need to address a technical point, namely
the coordinate system, one may recall that we have sorted the fact that FAA is not a continuous representation of frames
eigenvectors by eigenvalues and then labeled them by théee Appendix B). Although the FAA parameterization of
sorted rank. Using the standard labeling, we take the eigeinames is not continuous, the set of all frames is continuous.
vector with the largest eigenvalue, and label it as#axis; Conceptually, we are integrating over all frames, but we are
the eigenvector with the smallest eigenvalue is labeled as tfugced to parametrize the set to simplify the computation. The
y-axis; finally, the remaining eigenvector is labeled asithe discontinuities will not affect our integral, eq. (19), as long as
axis. For now we ignore the inversion symmetry of the eigerihe integrand is bounded in the neighborhood of the disconti-
vectors, and assume them to be uniquely determined andnaities, and the discontinuities occur on a set of measure zero.
be a right-handed coordinate system. (Due to the inversidine integrand is bounded because the characteristic functions
symmetry, it is always possible to choose the eigenvectors kK5(v, 8) are bounded.
form a right-handed coordinate system. Later, we will allow To ensure that the discontinuities are a set of measure zero,
for the inversion symmetry in our calculations.) we consider a special case of FAA. As mentioned in the foot-
Our now simplified problem can be stated as follows:  note for Definition 6, the FAA representation is not unique. To
completely specify an FAA representati@n, 0), we need to

Let Fy = (X, Ys, z1) coordinate frame of correct Saupe define the new location of the-axis wherp = 0 for eachu.

Matrix (10)  We choose a unique FAA representation which has disconti-
Let F, = (X, Y2, Z,) coordinate frame of estimated Saupe nuities on a set of measure zero. [Rfu) be the rotation that
Matrix (11) maps thez-axis tou by moving thez-axis along the geodesic

between them. Next, leR,(f) be a rotation byy degrees
Let £(v, w) = the angle between the vectorandw. around the axis. We can now uniquely choose our represen-
(12) tationasFFAA(u, 6) = R,(6)R(u). This mapping fronfu, 6)
Suppose we randomly choose a new coordinate systdenrotations (frames) is continuous everywhere except when
F5 = (X3, Y3, Z3). We want to know the probability thaf; is  the geodesic betweerand thez-axis is not uniquely defined.
geometrically closer taF, than is F,. The three constraints Onthe 2-sphere, geodesics are unique except between antipo-
are: dal points. As a result, our mapping is continuous everywhere
. except whem points in the negative-direction. For our FAA
LetC, be the constraintd (x;, Xs) < £ (X1, Xz) (13)  parameterization, the discontinuity @at= [0, 0, —1] occurs
LetC, be the constraintd (yy, Ys) < £(Y1, Y2) (14) only on a set of measure zero, therefore our integral (19) is
LetC; be the constraini(z;, zs) < £(z1,2,)  (15) unaffected by the discontinuity.
] o ) ) Now, computingP. exactly is likely to be very complicated
We choosé; ina manner that is isotropically uniform OVer gigebraically. Instead, we simplify the algebra by computing
all frgmes (coordinate f_rames). Another way to s_tate our prolp, upper bound oR.. We obtain an upper bound by replacing
lem is to ask what fractior?, of all frames Fs, satisfyC1, 2, g, and K, with the upper bound on their individual values.

andCs simultaneously. By integrating characteristic functiong;yst we replace the factdt, with unity. This is equivalent
over all frames, we can compute the fractidi, of frames {4 relaxing away our constrait.

that satisfy our constraints. We use the FAA representation to gecondly, we will find an upper bound dg,. However,
perform the integration in an isotropically uniform manner. pefore we obtain an upper bound &, we wish to simplify

Let (v, 6) = the frame specified by FAA (unit vector the integral slightly. Notice thak’; corresponds to constraint
Cz which constrains only the-axis of F;. We see thak; has

v.angled). - o (16) no dependence ah (The choice of only rotates about the
Let P. = the probability that; satisfie<;, C;, andCs. axisv = z,, and does not change the directionvof As a
(17)  result, we can pulK; outside the innermost integral. We are
Let K, (v, ) = (characteristic function:k; = 1if C; is left with
satisfied forF; = Q(v, ), otherwise K; = 0. (18)
Let Pe = Prob(Cy A Cy A Cy) Kalv. 0) = Ki(") (20)
1 1 _
- —f— f Ko(V. 0)Ko(v, 0)K(v. ) d0 dA. Pe = 87,2/’(3(") / Ki(v,0)deda. (1)
47 | 27 $2 10,27}
§2 [0,27]
19)

To obtain an upper bound d&y, we consider the geometry

The integral (19) is over the unit sphere= 2 with area of the problem. The inner integral &, can be thought of as a
element di, and the unit circl@ € S* with line element d.  function ofv. We can simply ask, then, what is the maximum
We parametrize the unit circle by the angle [0, 2r]. value of that function, over all possii&@
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Z;=V
k.8
— angle(z,,z,)
Circle y
Circ/eo

\/

-

‘ arc of a great circle

angle(x,,x,)

Ys

Y3

Fig. 1. Diagram for upper bound on the integralof. We start with the unit sphere. We consider two coordinate frames
(X1, Y1, Z1) and (Xs, Y3, Z3). The two circles are labeled by their angular radiix,, x,) and £(z;, z,). These two circles
represent our constrain€s andC; respectively (see eqgs. (13)—(15)). The circle aroxndie call O, and we call the other
circle W. The constrain€; requires thak, fall inside of the circleO, and the constraind; requires that; fall inside of the
circle W. Notice that once; is fixed,x; can travel along a great circle, @sotatesx; aroundv (by constructiorv = z;). The
maximal range o which satisfies our constraiit cannot be larger than the diameter of the cir@lavhich is 2/ (x,, X,).

intersect the circleD, then for this choice of/, there is no

angled which can satisfy;.
LetJ, = max / Ka(v,6) d6. (22) Let us return to eq. (22). For a fixed choicewthe value
[0.27] of the integral is equal to the angle for which the indicator

To visualize the geometry of our problem, let us work ifunction Ky (v, 6) is equal to unity (non-zero). This angle is
the coordinate framé;, of the correct Saupe matrix (see Fig-SIMPly the range of for whichx; falls inside the circle. This

ure 1). Our constraint, can be visualized as a small circleiS SIMply the length of the arc, of the great circlexgfwhichis
sitting on the equator (in the figure, this circle is labeted inside the c!rcleo. Over all possible choices ufthe ma_X|maI

and has an angular radius gfx, x,)). TheC; requirement Iength of this arc cannot be more than the angular d!am_eter of
that £ (x4, Xs) < £ (X1, X,) means that we require; to fall the circleO. Therefore, an upper bound on eq. (22) is simply
within this circle. For a fixed/, we havez; = v is also fixed.
Then, a9 rotates around, the location &f will sweep out

a great circle. If this great circle intersects the cirlgthen 24(X1, %) = Jy = max / Ki(v,0)do. (23)
we can satisfy our conditio6;. If the great circle does not [0.2]
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Our equation for satisfying our constraints now looks like Notice that in Definition 10 we need only consider two

1 casesi(vy, Vo) and (v, —Vy). This is significant, because it
P, < a2 / 2K5(V) £L(Xq, Xo) dA (24) means that for each angle we constrain, we have only two
4 s possibilities. Our angular constraints (13)—(15) now become
A(Xq, X .
_ LX) 4;2 ) K3(v) dA. (25) LetC; be the constraints,,;, (X1, Xa) < &in(X1, X2)  (30)
52 LetC, be the constraint,;, (Y1, Y3) < Luin (Y1, ¥2)  (31)

The final integral involvingk; is simply the area of the LetC; be the constraintd,;, (z1, Zs) < £in(21,22).  (32)
disc wherev satisfies<(z;, V) < £(zi, z,). We can perform
this integral in polar coordinates to obtain If we were to perform the same analysis as above, we dis-
cover that we gain a factor of 2, for two out of the three

o constraints. Why only two out of three? Because a rotation is
/ Ks(v)dA = / / sin(6) d¢ do completely specified by the mapping of two vectors. Once
52 0 o andx; are specified, the line representing theaxis is fixed.

= 27 (— c094 (24, 2,)) + cog0)). (26) The only possibilities are that satisfies;, or not, and there
are not multiple ways to satisfy or violate the condition.

Combining our results, we obtain Conceptually, we first satisf§;. For each choice @, <,
A(X1, X5) forces us to look at the choicez;. These two possibilities
Pe < I K3(v) dA (27)  represent two rotations that satisfy the constr@jnNext, we
52 attempt to satisfyC;. For each choice of-z;, and for each
£ (Xq, Xp) choice ofx; that satisfie€;, we know that a choice ofx;
Pe=— —@1- oS £ (z1, Z2))) (28)  \which also satisf;. Combining these possibilities, we obtain
£ (Xq, X2) a total of four possible solutions which satigfyandCs.
Pe=— —1-2-2). (29) At this point, one might wonder if the inversion symmetry
can also be applied 1@, to generate a total of eight solutions.
4.2. |nversion Symmetries and Eigenvectors However, this is impossible. If we inveyt to become—ys,

then our frame may no longer be valid (generated by a pure

We now account for the effects of inversion symmetryRon  rotation). Instead, we may generate what is known as a “per-
Originally, we assumed that the eigenvectors were uniqueférsion”, which is a pure rotation composed with a planar
determined, and were oriented as a right-handed coordingifiection. (Perversions change the handedness of our coordi-
system. While orthogonal, the eigenvectors are not uniquehate system.) Our stated problem only considers all possible
determined due to an inversion symmetry. An eigenveetor .qtations and does not include perversions.
has the same eigenvalue as. Thus, bothv and —v are Stated a different way, the choices of inverting (or not in-
possible eigenvectors for a given eigenvalue. verting) z; and x; can be accounted for by modifying the

To account for this, we shall use the idea of measuring thgyrameters ando in the FAA representation. However, once
angle between lines which pass through the origin. These ””%Sandxa are specified, one is not free to chogsebecause
are similar to vectors, however, they are “bi-directional” in the; jg fully determined. Independently specifying the inversion
sense that they do not have a definite direction like a vect%r non-inversion) of/; cannot be accounted for twandé,
Our characterization then is to replace our eigenvectors Wiggcause the resulting transformation may not be a rotation
lines parallel to the eigenvectors, and which pass through th%me). Similarly, one is free to specify any two out of the

origin. three axes as possibilities for inversion. However, one cannot
DEFINITION 10.  Letv, andv, be vectors. choose all three. _
Let/; and!, be the corresponding lines of andv, As a result, we need to modify our eq. (29) fB¢ by a
We definethe angle betweerd, and I, to be equal to factorof4:
Kmin(vl» VZ) = mln(é(vla VZ)? K(Vla _VZ)) 2& Xq1. X
c = 0, X2) 1-2-2y). (33)

Note that this definition measures the smaller angle be-
tween two intersecting lines. We choose the smaller angle, so _ ) .
that identical lines will have an angular difference of zero. In Finally, we convert this probability into a lower bound on
addition, this approach will overestimate the probabify e Percentile:
because it may believe that vectors which are neardians

off are very close. Thus, it will tend to include extra frames Percentile =1 P (34)
in the overestimate. This is consistent with our approach of Percentile > 1 — 24(Xy, X2) A=z 2) (35)
computing an upper bound dry. - T Lo
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This percentile represents the fraction of all frames thgtercentage differences of the axial and rhombic components
have a greater geometric difference frénthan the geomet- of the tensor (Wedemeyer, Rohl, and Scheraga 2002):
ric difference betweett; andF,.
Let S = a Saupe matrix (36)

5. Applicationsto NMR Residual Dipolar Let 1, = eigenvalues oS wherei; > A; > A,. (37)
Couplings

. . DIaFINITION 11. Theaxial componenbf Sis defined to be
We use our percentile measure, e.g., (35) to characterize and_ (1/2)%5

guantify the accuracy of estimates of Saupe matrices. In par-
ticular, we have investigated the accuracy of Saupe matricedMFINITION 12.  Therhombic componentf Sis defined to
the NVR algorithm (Langmead et al. 2003, 2004; Langmeakke D, = (1/3)(A; — 1,).

and Donald 2004). Briefly, the NVR algorithm is designed to

ve the NMR assi t orobl hen the struct tth Next, we consider the angular error between correspond-
solve the assighment problem when the structure o iﬁg eigenvectors. Finally, we use our percentile measure to

targetproteinis known, orif a ho.mologous structure s knowrz:. aracterize the fraction of all orientations which have larger
Toachieve this, NVR uses a variety of data,_ including a modg gular errors. See Tables 1-3. As we can see, the percentiles
strgcture, RDCS’I\?SSS?C specltrltjmt,hamF;(IjDeCegc?ange_daetlge above 80%, with typical values above 94%. This level of
an dulnatSS|gtne NVRS. odcorre a et' et f th ag a(Ja'r'sé(‘?curacy is sufficient for subsequent stages in NVR to achieve
TO € é.ruc utrhe, S nee ts_an ej |maNeHob 3 autpe bod accuracy for assignment (see Table 7). After assignment
rices. iven the saupe matrix and an ond vector, complete, the Saupe matrices have been refined with very
can use eq. (1) to convert the vector into a simulated RD ood accuracies (see Tables 4-6). We note that when NVR

value._ The simulated RDC value can the_n be compared 8mpletes an assignment with very high accuracy, the corre-
experimentally observed RDC values during the asagnme&%

onding Saupe tensor will be very close to the actual tensor.
process. We refer the reader to Langmead et al. (2003, 20 Is is because the correct tensor is the Saupe matrix that op-

for the details of the NVR algorithm. : : : - :
. timally fits the protein structure given the correct assignment
The NVR algorithm was demonstrated on NMR data frorg Y b g g

76-resid tein. h biquiti tched to f ¢ see footnote 1).
a 7b-resicue protein, human ubiquitin, matched to Tour struc- g6 assignment, a few of the angular deviations ap-
tures, including one mutant (homolog), determined eith

t ignificantly | hing; Tables 1-
by X-ray crystallography or by different NMR experiment EHear 0 be significantly large (approaching;3ee Tables

. ) . .3); however, the percentile measure shows the difference in
.(tW'tr;?\lIJ\t/sDCS‘f Litﬂgmdead et ?l' t2(310f3 ' ?j(')f?‘l)' 'Ehe ;e|a5|b| yverall rotation to be small (percentiles over 94%). Despite
e e s o it gpPEenty Sifcantanglat devatons, NVR comverges

’ . signments with high accuracy. This may suggest that for
NMR data for hen lysozyme (129 residues) and streptococc % g g 4 y SUug9

protein G (56 residues), matched to a variety of 3D structurB r specific case here (NVR), the percentile measure could
' more useful than angular deviations for characterizing the
models (Langmead et al. 2003, 2004); see Table 7. 9 9

. . . accuracy of Saupe matrices, inthe sense that it might be amore
The first stage of NVR is to estimate the Saupe Malrhcurate indicator of when NVR wil converge with high ac-

cez. Sufﬁmfntt accurafci/hln tT'S f!trﬁt sté:\ge 'S dlmportant, Sm% racy. We believe these results indicate that the percentile
subsequent stages of e algorithm depend on a reasonggie, o e pas potential to provide some insight for many ap-
initial estimate. The initial estimate is usually performed b lications of RDCs

employing a small number (around five) of high-confidenc

assignments. The resulting Saupe matrix is then used to refine

probabilities of assignments, and then additional assignme@sConclusions

are made. The additional assignments are used to refine the

Saupe matrix further, and the process is repeated until &% have presented a novel similarity measure for quantifying

signment is complete. (For details of the NVR algorithm, setne error of eigenvectors of Saupe matrices. This was done

Langmead et al. 2003, 2004). Because of its iterative natupg developing a probability-based similarity measure for 3D

and lack of back-tracking, a poor initial estimate of the Saup®tations. The similarity measure yields a lower bound of a

matrix could lead to additional assignments that are incorregtercentile, which represents the probability that a randomly

The accuracy of the Saupe matrix might be degraded if it imtated Saupe matrix would contain eigenvectors that have a

“refined” with these incorrect assignments. It is then possiblarger angular deviation. We then used this percentile measure

that the entire iterative cycle would diverge from the corredo study the performance of the automated NMR assignment

assignment. As a result, we are interested in quantifying timeethod NVR (Langmead et al. 2003, 2004). We believe that

accuracy of the initial and final Saupe matrices in NVR.  the percentile measure will be useful in quantifying the per-
We characterize the accuracy of the Saupe matrix estimafesmance of many NMR algorithms which utilize RDCs. In

in three ways. First, we compare the eigenvalues by looking atidition, our ideas may also help elucidate the performance of
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Table 1. Ubiquitin Tensor Estimates

Bicelle 292 K Bicelle 298 K
Percent differencel Angular Difference Percent differencel Angular difference
Model | D, D, S:z Sex Syy Percentile Dg Dy S:z Srx Syy Percentile
1G6J | 2.3 0.2 208 251 [ 218 98 12.0 5.0 2811 303 16.1 96
1UBI 11 3.7 273|282 | 7.1 96 15.2 8.3 284 | 178 | 27.7 96
1UBQ | 0.8 2.6 175 | 11.7 | 20.8 99 15.3 7.9 16.4 | 27.3 | 32.0 95
1UD7 | 0.2 2.2 21.2 | 165 | 25.8 98 14.7 6.9 169 | 163 | 7.4 99

This table demonstrates the accuracy of the first step of the NVR algorithm: tensor estimation. Columns 2 and
3 show the percentage difference for the axial and rhombic tdbpand D, for the four models, 1G6J, 1UBI,

1UBQ and 1UD7, versus the actual axial and rhombic terms in the bicelle medium recorded at 292 K. The
D, and D, differences are normalized by the range of the experimentally measured dipolar coupling values.
Columns 4-6 show the angular differences (in degrees) between the eigenvectors of the estimated tensors and
the eigenvectors of the actual tensors in the bicelle medium at 292 I§.the director of the tensor (i.e., the
eigenvector associated with the largest eigenvalue of the telssogndS,, are eigenvectors associated with

the second largest and smallest eigenvalue of the tensor, respectively. Columns 8-12 show the accuracy of the
tensor estimates in the bicelle medium recorded at 298 K. Columns 7 and 13 report the accuracy of the tensor
estimate as a percentile (eq. (34)).

Table 2. Streptococcal Protein G (SPG) Tensor Estimates. Tensor estimates for the B1 domain of SPG

Phage Bicelle
Percent differencel Angular difference Percent differencel Angular difference
Model Dy D, Sz Stx Syy Percentile Dy D, Sz Syx Syy Percentile
1GB1 | 0.6 6.0 268 | 233 | 214 97 2.4 6.6 179 | 205 | 22.3 98
2GB1 | 0.2 0.5 26.8 | 23.3| 214 97 1.7 10.3 179 | 205 | 223 98
1PGB | 0.6 6.0 238 | 245 | 2838 97 2.4 6.6 152 | 29.3 | 25.8 96

Table 3. Lysozyme Tensor Estimates

5% Bicelle 7.5% Bicelle
Percent differencel Angular difference Percent difference] Angular difference
Model Dy, D, Sz Stx Syy Percentile D, D, Sz Syx Syy Percentile
193L [ 1.5 0.1 16.7 6.7 | 16.7 99 8.8 8.7 386 | 49.0 [ 332 85
1AKI 2.3 0.5 13.2 | 106 | 85 99 10.0 9.3 23.2 | 51.0 | 45.2 81
1AZF 1.7 0.5 7.6 7.3 5.6 99 9.5 8.5 31.2 | 29.6 | 11.0 95
1BGI | 1.2 0.7 30.0| 85 | 29.8 96 8.9 9.4 246 | 438 | 357 89
1H87 2.1 0.2 26.2 | 29.9 | 34.2 94 9.9 8.6 23.8 | 15.3 | 25.8 97
1LsC | 1.7 0.4 16.1 | 20.8 | 22.8 98 8.9 8.5 12.2 | 12.0| 11.6 99
1LSE 1.7 0.4 12.6 | 49.2 | 445 83 9.5 8.3 29.2 | 48.2 | 421 84
1LYz 9.8 5.0 10.7 | 21.4 | 18.5 99 18.9 8.5 213 | 21.0| 241 98
2LYZ | 35 1.8 20.8 | 16.2 | 16.2 99 11.56 8.3 238 | 250 | 75 98
3LYZ 4.3 2.4 20.0 | 314 | 25.2 96 12.7 8.0 278 | 38.1| 44 96
4Yz | 3.1 2.3 240 | 93 | 240 98 12.6 8.6 12.7 | 145 | 17.7 99
5LYZ 3.1 2.3 239 | 93 24.0 98 12.6 8.6 12.7 | 145 | 17.7 99
6LYZ | 3.0 0.7 15.7 | 16.8 | 16.8 99 11.0 8.6 26.6 | 37.3 | 46.0 87

other rotation-based algorithms in structural biology, compuwerges very rapidly to unity, when the angular errors become
tational chemistry, and drug design, by quantifying the erramall.
of orientations and rotations of chemical bonds, domains, pro- Finally, we note there are other approaches to comparing
teins, and ligands. Saupe matrices that are likely to be useful. One approach is to
In closing, we make an observation about our final resuldssume a uniform distribution of chemical bond orientations,
and consider future possibilities for investigation. Supposend then to compare the distribution of RDC values generated
that the errors in angles between two Saupe matrices deeach Saupe matrix. For example, one could imagine per-
roughly equal. Thatis, suppose= £(X;, X,) = £(21,2;).In  forming a simple RMSD comparison, or a more sophisticated
this case, we note that a Taylor expansion of eq. (30)ig®) Hausdorff-based comparison (Huttenlocher and Kedem 1990;
for small angles alpha. As a result, our percentile (35) comonald, Kapur, and Mundy 1992). Even beyond that, there
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Table 4. Ubiquitin Tensor I mprovements

Bicelle 292 K Bicelle 298 K
Percent differencel Angular difference Percent differencel Angular difference
Model | D, D, Szz | Sxx | Syy | Percentile Dg Dy Szz | Sxx | Syy | Percentile
1G6J 0 0.6 02| 03] 0.2 100 0 0 02| 02] 01 100
1UBI 0.1 0.2 23| 24 | 06 100 0 0 02| 02| 01 100
1UBQ 0 0 0 0 0 100 0 0 0 0 0 100
1UD7 0 0.1 05| 02| 05 100 0 0 07| 09 | 0.6 100

The accuracies of the final tensor estimates, after NVR has completed the resonance assignment phase. The
accuracy is improved from the initial tensor estimates (see Table 1).

Table 5. SPG Tensor | mprovements

Phage Bicelle
Percent differencel Angular difference Percent differencel Angular difference
Mode | D, D, Szz | Sxx | Syy | Percentile Dg D, Szz | Sxx | Syy | Percentile
1GB1 0 0 0 0 0 100 0 0 0 0 0 100
2GB1 0 0 0 0 0 100 0 0 0 0 0 100
1PGB 0 0 0 0 0 100 0 0 0 0 0 100

The accuracies of the final tensor estimates, after NVR has completed the resonance assignment phase. The
accuracy is improved from the initial tensor estimates (see Table 2).

Table 6. Lysozyme Tensor | mprovements

5% Bicelle 7.5% Bicelle
Percent differencel Angular difference Percent differencel Angular difference
Model | D, D, Szz | Sxx | Syy | Percentile Dg Dy Szz | Sxx | Syy | Percentile
193L 0 0 0 0 0 100 0 0 0 0 0 100
1AKI 0 0 0 0 0 100 0 0 0 0 0 100
1AZF 0 0 0 0 0 100 0 0 0 0 0 100
1BGI 0 0 0 0 0 100 0 0 0 0 0 100
1H87 0 0 0 0 0 100 0 0 0 0 0 100
1LsC | 0.1 0.1 0 0.1 | 01 100 0 0.1 0 0 0 100
1LSE 0 0 0 0 0 100 0 0 0 0 0 100
1LYZ 0 0 0 0 0 100 0 0 0 0 0 100
2LYZ 0 0 0 0 0 100 0 0 0 0 0 100
3LYz 0 0 0 0 0 100 0 0 0 0 0 100
aLYz 0 0 0 0 0 100 0 0 0 0 0 100
5LYZ 0 0 0 0 0 100 0 0 0 0 0 100
6LYZ | 1.5 3.3 07| 12| 1.0 100 1.9 5.8 08| 53| 5.2 100

The accuracies of the final tensor estimates, after NVR has completed the resonance assignment phase. The
accuracy is improved from the initial tensor estimates (see Table 3).

may be comparison methods that are based on the geomedrsor in choosing an isotropically uniform parameterization
of the protein in question, and may include physical effectsf rotations is to use the conventional (canonical) axis—angle
such as flexibility and dynamics. It may then be possible fori@presentation of rotations (Definition 5). For the axis—angle,
probability measure to be defined for comparing eigenvaluesuniform distribution over the parametersver the sphere

in addition to our method for comparing eigenvectors. 52, and the unit circl® < [0, 2rr), will not induce a rotation-
ally symmetric distribution over rotations. Superficially, this
geometric construction appears to be rotationally symmetric;
however, it does not respect the detailed group structure of ro-
tations. As noted by Kendall and Moran (1963) and Diaconis
and Shahshahani (1999), the distribution @vehould not be

In this appendix, we discuss and prove that the FAA represemiform, but in fact, proportional to sit).

tation is isotropically uniform. Before we begin, it is worth- We begin with a brief discussion about the intuition be-
while to describe some incorrect intuition. As noted by Diacdrind the FAA representation. The intuitive motivation is that
nis and Shahshahani (1999) and Mitchell (2004), a comma@nrotationally isotropic parameterization must, by definition,

Appendix A: Proof that the Frame-Axis-Angle
Representation is|sotropically Uniform
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Table 7. Accuracy

PDB ID Exp. Method | Accuracy PDBID Exp. Method | Accuracy
1G6J (Babu, Flynn, and Wand 2001) NMR 97 1GB1 (Gronenborn et al
1UBI (Ramage et al. 1994) X-ray (L8A) | 92 1991) NMR 100%
1UBQ (Vijay-Kumar, Bugg, and Cook 1987) X-ray (L8A) | 100 2GB1 (Giggelr)‘bom etal MR 100%
1UD7 (Johnson et al. 1999) NMR 93 1PGB (Gallagher et al,
(A) Ubiquitin 1994) X-ray (1.92A) | 100%
| PDB ID | Exp. Method | Accuracy | (B) SPG
193L (Vaney et al. 1996) X-ray (1.3A) 100% PDB ID Exp. Method | Accuracy
1AKI (Artymiuk et al. 1982) X-ray (1.5 A) 100% 1LYZ (Diamond 1974) | X-ray (2.0 &) 100%
1AZF (Lim et al. 1998) X-ray (1.8 A) 100% 2LYZ (Diamond 1974) | X-ray (2.0 &) 100%
1BGI (Oki et al. 1999) X-ray (1.7 A) 100% 3LYZ (Diamond 1974) | X-ray (2.0 A) 100%
1H87 (Girard et al. 2001) X-ray (1.7 A) 100% 4LYZ (Diamond 1974) | X-ray (2.0 ) 100%
1LSC (Kurinov and Harrison 1995) X-ray (1.7 A) 98% 5LYZ (Diamond 1974) | X-ray (2.0 A) 100%
1LSE (Kurinov and Harrison 1995) X-ray (1.7 A) 100% 6LYZ (Diamond 1974) | X-ray (2.0 &) 97%
(C) Lysozyme (D) Lysozyme (continued)

(A) NVR achieves an accuracy of 92—100% on the four ubiquitin models. The structure 1D3Z (Cornilescu et al. 1998) is
the only published structure of ubiquitin to have been refined against RDCs. The RDCs used in Cornilescu et al. (1998)
have been published and were used in each of the four NVR trials. 1G6J, 1UBI, and 1UBQ have 100% sequence identity
to 1D3Z. 1UD7 is a mutant form of human ubiquitin. As such, it demonstrates the effectiveness of NVR when the
model is a close homolog of the target protein. (B)—(D) The RDCs for the B1 domain of SPG (Kuszewski, Gronenborn,
and Clore 1999) and hen lysozyme (Schwalbe et al. 2001) were obtained from the PDB. NOEs and amide exchange
data were extracted from their associated restraints files. NVR achieves an accuracy of 100% (Table 7B) and 97-100%
(Tables 7C and 7D), respectively.

place thez-axis uniformly over the unit sphere. Then, fora Let P(v,0) = P.(v) P,(9) be the probability distribution
given placement of the-axis, thex-axis must be uniformly which is uniform over the parameters of FAA.

distributed in a unit circle perpendicular to the new position We claim thatP (v, 6) induces a distribution over orienta-
of the z-axis. The idea for this intuition is a symmetry argu-ions (v, 6) which is rotationally symmetric.

ment. If the distribution ok is not uniform over the circle, it Proof. According to the subgroup method (Diaconis and

Seems unllkely_that the parameterlzapon IS |sotrop|ca_lly YNk h ahshahani 1999), a rotationally symmetric probability dis-
form, because it seems not to be rotationally symmetric abogy

» . . A tribution over rotations may be chosen as follows. First, per-
the new position of the-axis. While this intuition is helpful, . : o
. : form a random rotation about theaxis which is uniform over
it is obviously not a proof.

In the proof, we will proceed in two steps. First, we shovx?” possible angles 0, 2z). Secondly, rotate the-axis to

that a uniform probability distribution over the FAA param-a random point on the unit sphere, in such a way thatihe

. P o . xis is uniformly distributed over the sphere. For details and
eters induces a distribution over frames which is rotational ; : :
. . e proof, we refer the reader to Diaconis and Shahshahani
symmetric. To prove this, we note that the FAA represent,

tion is a uniform parameterization of the subgroup metho 1999). The subgroup method generates a probability distri-
b group bLgion over rotations, which in turn induces a probability dis-

(Diaconis and Shahshahani 1999). Secondly, we show ﬂ}ﬁ ution over the parameters of the FAA representation. We

a rotatlona_lly symmetric dl_strlbutlon of frames will ran.dom_argue that the induced distribution is uniform over the FAA
ize any unit vector so that it (the vector) becomes umformléarameters

distributed over the unit sphere. Together, these two steps _ . .
show that the FAA representation of rotations is isotropically Let R.(¢) = the rotation around the-axis by? degrees.

uniform. Let R(n) = the rotation, as specified by the subgroup

LEMMA 1. Consider the FAA parameterization of orien-method, which rotates theaxis into the unit vectan. For our
tations. Let(v, #) be the variables of the parameterizationproof here, the exact details &i(n) are unimportant, except
wherev is a unit vector, and is an angle in the rand®, 27).  for the fact thatR (n) is a fixed function of.

Let Py(v) be a uniform distribution over the unit sphesé

Let P,(9) be a uniform distribution over the unit circ$ such Let R(®,n) = R(nN)R.(9) be the rotation represented by
thaté € [0, 2rr). the subgroup method.



Yan, Langmead, and Donald / A Probability-Based Similarity Measure 177

According to the subgroup method, a choicenafhichis parameters of the FAA representation, namely, 6) as de-
uniform over the unit sphere, and a choice&afhich is uni- fined above. The FAA representation is an onto and one-to-
form over[0, 2r) induces a rotationally symmetric distribu- one mapping from parameters to rotations (see Appendix B).
tion over rotations (in the language of group theory, it inducegherefore, the converse is also true: a uniform distribution
a probability distribution which respects the Haar measurepf FAA parameterspP (v, 0), induces a distribution over rota-

Notice that in the subgroup method, the rotation of afgletions that is rotationally symmetric. O
is performed first, and then the placement of fkexis along N

. C LEMMA 2. Given:

n is performed afterwards. This is the reverse order from oyr
FAA representation, where we first place thexis alongv :

, frames.

first, and then rotate by degrees around afterwards. In 2. An arbitrary unit vectow
general, rotations do not commute. What we would like to do; '
then, is to rewrite the subgroup rotatifiity, n) = R(N)R.(9)

in a form wherer (n) occurs first, and then is followed by a
new rotation which takes the place Bf(9).

Consider a rotation aboutby 6 degrees. Given that(n)
rotates the-axis ton, we can think ofR(n) as a change of
basis. Using the change of basis, we know the following.

A rotationally symmetric distributio® over all possible

Let U be an arbitrary set of unit vectors (conceptually, this is
a patch of the unit sphere).

Let Q(U) = probability thatHv will fall inside U if we pick

a frameH according to the distributio#®.

We claim thatQ (U) is rotationally symmetric, in the sense

Let R, (9) = A rotation around the axis by 6 degrees. (38) thatQ(U) = Q(RU) for all R whereR is an arbitrary rota-
tion, andRU is the set of unit vectors generated by rotating

_ -1

Ra(0) = RIMR.O)R™(M) (39) each element af/ by R.

R, ()R(N) = R(NR.(0) (40) . . .

R,(O)R(N) = R(@. ). (41) Proof. We prove this lemma by directly showing that for

all sets of unit vectorsl/, and for all rotationsR, that

We now see that the subgroup method can also be thoudhtU) = Q(RU).
of as placing the-axis alongn first, and then performing a
rotation aboun by 6 degrees. This is very close to the definilLet H: be the set of frames which transfonrinto U, i.e.,
tion of the of the FAA representation (Definition 6); howeverf.v = U.
it differs in that@ in FAA refers to an absolute orientation,Let H be the set of frames which transforminto RU, i.e.,
while 6 in R,(0) refers to a rotation. Hyv = RU.

Given an arbitrary pai(dy, n), consider the images of the
x- andz-axis after the rotatio® (6, n). By construction, the ~ We now show thaR H; is equal toH,.
z-axis will end up pointing along. As for thex-axis, it must ~ We know thatt,v = U. So, we hav&® H,v = RU. There-
remain perpendicular to theaxis. If6, varies uniformly over fore, we know thaRH, € H, becauséd, is defined as the
[0, 277), then the image of the-axis will be a point that varies Set of all frames which transforminto RU.
uniformly over a unit circle that is in the plane containing the Similarly, H;v = RU tells us thaR *H,v = U. So we
origin, and perpendicular to the image of thexis. This is know thatR™H, C H, becausé{, is defined as the set of all
easy to see from eq. (41). frames which transforma into U. Rotations are a one-to-one

Let Q(v, 6,) be the frame corresponding to the FAA paramand onto function from frames to frames, so we can conclude
etersv andd,. We want to consider the mapping frakig,, n) ~ thatH, < RH;.
to Q(v, 6,), where they both represent the same frame (rota- SinceRH, € H,andH, € RH;,weknowthaR H, = H,.
tion). By construction, we can see that both mappings move By rotational symmetrypP (H,) = P(RH,), which in turn
thez-axis to the corresponding input vector. Identical rotation&€ans that’ (H,) = P(H,). Since H; mapsv into U, we
move thez-axis to the same location, we must have= n. have P(H;) = Q(U). Similarly, P(H,) = Q(RU). To-
From equation (38), we can conclude that= 6, + 6,(n),  9ether, these imply tha@(U) = Q(RU). Therefore,Q is
whereé,(n) is a constant dependent anOne can see that rotationally symmetric. The only rotationally symmetric dis-
6o(n) depends on both the specific detailskih), and also tribution over unit vectors is the uniform distribution over the
the arbitrary choices @ = 0 for the FAA representation (see Unit sphere. L
Definition 6 and ts fo_otnote)__ . . THEOREM2. The FAA parameterization of framesisisotrop-

As aresult, ifis uniformly distributed over the unit sphere, ;

. . 7 _ ically uniform.
v will also be uniformly distributed over the unit sphere. Fur-
thermore, eq. (41) tells us that for everya uniform distribu- Proof. From Lemma 1, we know that a uniform distribution
tion overd; will induce a uniform distribution ove#,. There-  over the parameters of the FAA representation induces a prob-
fore, the rotationally symmetric distribution generated by thability distribution over frames which is rotationally symmet-
subgroup method will induce a uniform distribution over th&ic. Thus, we satisfy the second condition of Definition 9.
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From Lemma 2, we know that all rotationally symmetric1988; Kinsey 1991) showing that this is impossibiefpllows
distributions of rotations will randomize any unit vector ovethat FAA is not a continuous representation of orientations.
the unit sphere in a uniform manner. Suppose we are given an FAA representatiomw, 6) =

Together, we can conclude that a uniform distribution ove (v, 9), y(v, 8), z(v, 0)). As noted in a footnote earlier, there
the parameters of the FAA representation will randomize argre an infinite number of FAA representations of orientations,
unit vector so that it is uniformly distributed over the spherewhich differ only in their choice 0® = 0 for eachv. From
Thus, we satisfy the first condition of Definition 9. O H, we construct a set of tangent vectors on the unit sphere
S2, Consider the functiom(v) = x(v, 0). Our functionh
is a restricted version of our full functiod. So if h is not
. . continuous, thei is not continuous.

Appendix B:_ Technical Notes on the FAA Our functionh(v) is a mapping froms? to unit vectors.

Representation We know thaty = z(v, 9) by definition of the FAA represen-
tation. We also know that(v, 6) is perpendicular ta(v, 6)

Here we prove two theorems. The first is that the FAA reprdecauseH is a mapping to valid frames. Thereforgy) is

sentation is a bijection betweé x S! and frames. Because perpendicular te, which in turn meank(v) is tangent to the

52 x S*andS 0 (3) have different homology types, they cannosphere av.

be homeomorphic (Munkres 1984). As a result, any mapping So our functiorh specifies acomplete set of “tangent hairs”

between them cannot simultaneously satisfy all of the followen the unit sphere. Therefore, by the above-mentioned theo-

ing conditions (definition of homeomorphic): rem from topology, we conclude thiatcannot be continuous.

ThereforeH cannot be continuous. So any FAA representa-

(1) the mapping is continuous; tion of orientations must be discontinuous. O

) ] ] ) One might wonder if the discontinuities of the FAA repre-

(2) the mapping’s inverse is continuous; sentation are a matter of concern. For example, the disconti-
nuities may be localized to some partssét« S*, thus making

(3) the mapping is one-to-one; the discontinuities themselves non-isotropic. While this may
be true, itis not relevant to our discussion. All we care about is

(4) the mapping is onto. thata uniform distribution over the parameters of FAAinduces

a distribution of orientations that is isotropically uniform.

In our case, we prove 3 and 4. So it must be that we cannot A simple analogy would be a parameterization of the unit
satisfy 1 and/or 2. In the second theorem, we give a direcircle by the intervalO, 1] which is uniform, but not contin-
proof that the FAA representation is not continuous. uous. For example, € [0, 1/2] becomes mapped tor2 and
t, € [1/2, 1] becomes mapped tar2(3/2) — ). Although
ﬂﬂs mapping is not continuous, a uniform distribution over
t € [0, 1] induces a uniform distribution over the unit circle.
Proof. To prove that the FAA representation is onto, we show
that given any framéd = (x,y, 2), the_re is a unique pair Appendix C: Relationships Between
(v, ) which represents that frame. First, observe thag . .
always along the-axis, sov = z is uniquely determined. Representations of Rotations
Next, note thak is a unit vector which is perpendicular to
z. Thereforex lies on a unit circle perpendicular 1o This,
in turn, uniquely specifies the anglewhich represents the

THEOREM 3. The FAA representation is a one-to-one an
onto mapping betwees? x S* and frames.

We consider the relationship between several different rep-
resentations of rotations,0 (3). Specifically, we shall look
at the representations orthogonal image, frames, quaternions,

d|re<_:t|qn of th_ex-aX|s. . axis—angle, and the FAA representation. The relationships are
Similarly, given an axis and an andke 6), the correspond- -
summarized by eq. (52).

ing frame is uniquely determined. Therefore the mapping is We begin by showing thaf 0 (3), orthogonal image, and

one-to-one. frames are isomorphic to each other. First, consiier3)
Next, we show that the FAA representation is notind frames. According to Definition 4, a frame is specified by

continuous. an ordered triple of unit vector, y, z) such thatx x y =

z. We note that one can convert betwe®f (3) and frames

trivially; given a rotation matrixk in SO (3), the columns

Proof. Our proof will be by contradiction. We will show that of R are the unit vectors of the frame that corresponds to

if the aX|s—angIe representation were continuous, then it ,"T’This result from topology is colloquially known as the Hairy Ball Theorem

pgssible to “_Continuousw comb a spher_e with tangent hairsyng is a direct consequence of the famous Brouwer Fixed Point Theorem. See
Since there is a theorem from differential topology (RotmaRotman (1988) and Kinsey (1991).

THEOREM4. The FAA representation is not continuous.




Yan, Langmead, and Donald / A Probability-Based Similarity Measure 179

R. Similarly, given a frameF, the unit vectors o are the

columns of the corresponding rotation matrix3® (3). For

frames to be isomorphic t60(3), we need to define the LetT(n,§) = axis—angle representation of a rotation

group operator. Naturally, we define multiplication of frames with axisn and angle. (45)

to be the equivalent operation of matrix multiplication on the

corresponding matrices. In this way, we have a one-to-one and

onto mapping between frames a$id (3) which preserves the

group operations on both sides. . . . : .
Next, we consider the orthogonal image representation of Notice that the mapping from axis—angle to quaternions is

rotations (Mandell et al. 2001; Mitchell 2004). L& be a continuous. Furthermore, if we restrigtto be in the range
rotation, and ley andz be they- andz-axis, respectively. The [0, 27), then the mapping is almost one-to-one. The mapping

orthogonal image representation is based on the facRteat Is one-to-one except wheh= 0.
fU”y Specified by the image of thﬁ- andz-axis, namerRy THEOREM 5. ¢(8,n) is a one-to-one mappmg fo# €
and Rz. The orthogonal image representation is an ordergd, 2rr), and it is many-to-one wheh= 0.
pair of vectors, which represent the image of thandz-axis
under the rotation.

If we work in the coordinate frame of and z, then CaAsel:6 =0.
y=[010"andz=[00 1. Let M be the matrix inNSO(3) Whend = 0, the mapping is many-to-one because for any unit
which represents our rotatiat. We now see thaRy andRz  vectorn, we will map(n, O) to the quaternioifil, 0, O, O].
are the second and third columnsMt In fact, the orthogo- .

. S . CASE 20 € (0, 27).
nal image is simply a more compact representation of framei_s. . .

i S et (01, n;) and(6,, n,) be two axis—angle representations of
Frames have a redundant amount of information; given any ;
. . . two rotations. To show one-to-one, we need

two vectors of a frame, the third can be uniquely determined
by the right-hand rule x y = z. The orthogonal image repre-
sentation is similar to frames, except with one vector removed. i
So if we define the group operator on orthogonal images ‘the<: direction is trivial.
the analogous fashion, we see that the orthogonal image r¢fs spow the= direction. Assume that(6,
resentation is isomorphic to frames and tiSu%(3). ’

Now that we have showﬂO(S)', frames,.and the orthog-  ¢og6,/2) + sin@/2)n, = cog6,/2) + sin@/2)n, (49)
onal image representation to be isomorphic to each other, we CoS(61/2) = Cosf,/2) (50)
consider quaternions. We begin with the mapping fromquater- =~ /=7 = 7772
nions toS O (3) (Salamin 1979). sin(01/2)ny = sin®,/2)n,. (51)

Letg (@, n) = quaternion corresponding ®(n, ). (46)
q(8,n) =cog6/2) + sin(6/2)n. )

Proof.

01, n) =q6,n,) < O, =6,andn; =n,. (48)

n;) = q(62, ny).

From eg. (50) and the fact that, 6, € (0, 2), we know

Letg = (qo, 1, 92, 93) be a quaternion with scalar 6, = 6, because cd8,/2) is invertible in this range. From

partqo and vector pars, g», gs (42) eq. (51) and the fact tha, = 6, # 0, we know that
Let R(q) = the matrix inS O (3) corresponding to sin(6,/2) = sin(6,/2) # 0. So we must have; = n,. O
quaterniory . (43) DEFINITION 13. We say a mapping isearly one-to-onéf
R(g) = and only if it is one-to-one everywhere, except for a set of
measure zero in its range and also for a set of measure zero in
its domain.

2(gog3 + 9291 43 —ai +43 — a3 2(—qoq1 + 92q3)

a5 +a?—a2— a3  2A-qog3+q192)  2(qog2 + q193)
2(— 2 2_ 2 _ 2 2|
(—q092 + 9391) (091 +9392) 95 — 41 — 495 + 43

(44) DEFINITION 14. We say a mapping isearly two-to-ondf
and only if it is two-to-one everywhere, except for a set of
measure zero in its range and also for a set of measure zero in

As one can see, the mapping from quaterionS @(3) is its domain.

continuous in the sense that each componeRtisfa contin-

uous function of;. One can also observe thaand—g map So, the angle-axis representation is nearly one-to-one with

to the same matrix if O (3). It is well known that quaternions quaternions, and nearly two-to-one wiftO (3). It is well

are a two-to-one homomorphism 80 (3) (Salamin 1979). known that for the axis—angle representation of rotations,
Another common representation of rotations is the con®, n) and(2r — 6, —n) represent the same rotation.

ventional (classical/canonical) axis—angle, where one speci- Finally, we consider the FAA representation. We refer the

fies the axis of the rotation by a unit vector, and the angle ieader to Appendix B to show that the mapping from the FAA

the amount of rotation around the axis (see Definition 5). Thepresentation t68 O (3) is one-to-one, but discontinuous. We

mapping from axis angle to quaternions is summarize the relationships in eq. (52).
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. 2—1,homomorphism
Quaternions —_— SO(3)
continuous
nearly 1—1 Tcontinous ‘ ) isomorphic
. . nearly 2—1
Axis-Angle Rotations _— Orthogonal Image (52)
continuous
‘ ) isomorphic
. 1—-1,bijection
Axis-Angle Frames —_— Frames

discontinuous

We close by noting a few of the representations which aigailey-Kellogg, C., Widge, A., Kelley, J. J. lll, Berardi, M. J.,
isotropically uniform. For quaternions, a uniform parameteri- Bushweller, J. H., and Donald, B. R. 2000. The NOESY
zation of the three sphef# will sample rotations inamanner  jigsaw: automated protein secondary structure and main-
which is isotropically uniform (Salamin 1972). As shown in chain assignment from sparse, unassigned NMR data.
this paper, the FAA representation is isotropically uniform. Journal of Computational Biology(3—4):537-558.
However, the conventional (canonical) axis—angle represe@hen, Y., Reizer, J., Saier M. H. Jr, Fairbrother, W. J., and
tation of rotations is not isotropically uniform (see the end of Wright, P. E. 1993. Mapping of the binding interfaces of
Appendix A). The orthogonal image method is also known to the proteins of the bacterial phosphotransferase system,
be isotropically uniform (Mandell et al. 2001; Mitchell 2004) HPr and llAglc.Biochemistry32(1):32-37.

(see equation 52). Clore, G. M., Gronenborn, A. M., and Bax, A. 1998. A ro-
bust method for determining the magnitude of the fully
asymmetric alignment tensor of oriented macromolecules
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