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Abstract

We have derived a quartic equation for computing the direction of an internuclear vector from residual dipolar
couplings (RDCs) measured in two aligning media, and two simple trigonometric equations for computing the
backbone (φ,ψ) angles from two backbone vectors in consecutive peptide planes. These equations make it possible
to compute, exactly and in constant time, the backbone (φ,ψ) angles for a residue from RDCs in two media on any
single backbone vector type. Building upon these exact solutions we have designed a novel algorithm for determ-
ining a protein backbone substructure consisting of α-helices and β-sheets. Our algorithm employs a systematic
search technique to refine the conformation of both α-helices and β-sheets and to determine their orientations using
exclusively the angular restraints from RDCs. The algorithm computes the backbone substructure employing very
sparse distance restraints between pairs of α-helices and β-sheets refined by the systematic search. The algorithm
has been demonstrated on the protein human ubiquitin using only backbone NH RDCs, plus twelve hydrogen bonds
and four NOE distance restraints. Further, our results show that both the global orientations and the conformations
of α-helices and β-strands can be determined with high accuracy using only two RDCs per residue. The algorithm
requires, as its input, backbone resonance assignments, the identification of α-helices and β-sheets as well as sparse
NOE distance and hydrogen bond restraints.

Abbreviations: NMR – nuclear magnetic resonance; RDC – residual dipolar coupling; NOE – nuclear Overhauser
effect; SVD – singular value decomposition; DFS – depth-first search; RMSD – root mean square deviation; POF
– principal order frame; PDB – protein data bank; SA – simulated annealing; MD – molecular dynamics.

Introduction

The increasing gap between the speeds of DNA se-
quencing and protein structure determination requires
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the development of efficient algorithms to compute
structures as accurately as possible using only a min-
imum number of restraints obtainable rapidly by ex-
perimental techniques. One way to achieve this is to
develop algorithms whose key components are ana-
lytic expressions computable in constant time.1 Here
we present such an algorithm for determining a pro-
tein backbone structure using global angular (orienta-
tional) restraints on internuclear vectors derived from
backbone residual dipolar couplings (RDCs) meas-
ured in two aligning media (Tjandra and Bax, 1997;
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Tolman et al., 1995). The RDCs can be recorded and
assigned much faster than nuclear Overhauser effects
(NOEs) required by traditional NMR structure determ-
ination methods. Months of time can be required to
assign a sufficient number of NOEs, especially those
involving sidechain protons, to compute an accurate
NMR structure. Therefore, RDCs are better suited
for developing high-throughput structure determina-
tion methods. For example, algorithms have been
designed to compute a protein fold with RDCs alone or
with RDCs plus other restraints such as chemical shifts
or sparse NOEs (Andrec et al., 2001; Delaglio et al.,
2000; Fowler et al., 2000; Giesen et al., 2003; Hus
et al., 2001; Rohl and Baker, 2002; Tian et al.,
2001). These methods require several sets of RDCs
in one or two media and use a fragment replacement
method (Andrec et al., 2001; Delaglio et al., 2000;
Rohl and Baker, 2002), rely on heuristic algorithms
and molecular dynamics (Clore et al., 1999; Giesen
et al., 2003; Hus et al., 2001), or employ RDCs
only for orienting ideal helices (Fowler et al., 2000).
The fragment replacement method relies heavily on
statistics from the Protein Databank (PDB) (Berman
et al., 2000). A different search technique, systematic
search, has been used successfully to determine the
structure of a tripeptide by solid-state NMR (Rienstra
et al., 2002). A systematic search is a search over
all possible conformations (solutions) that employs
a provable pruning strategy that guarantees pruned
conformations need not be considered further. In this
paper we demonstrate that by combining systematic
search with exact solutions for computing, first, the
directions of an NH vector, then, (φ,ψ) angles in con-
stant time for a single residue, it is possible to compute
a backbone substructure consisting of α-helices and
β-sheets using only RDCs in two media on a single
backbone vector type plus very sparse distance re-
straints. Further, our algorithm uses only the averages
for the backbone (φ,ψ) angles from the PDB and does
not rely on molecular dynamics.

Theoretical background

In this section we outline the derivation of a quartic
equation used to compute the orientation of an in-
ternuclear unit vector from RDCs in two media, and
two simple trigonometric equations used to compute
the backbone (φ,ψ) angles of residue i given one
unit vector in peptide plane i and another unit vec-
tor in plane i + 1. These unit vectors are computed

from the quartic equation. Interested readers can refer
to Appendices A, B for the full details of derivation
of the quartic and trigonometric equations. Then, we
describe a recursive strategy for computing, con-
secutively, the (φ,ψ) angles of all the residues of a
structural fragment.

Computation of vector orientations

The equations for NH RDCs measured in two media
can be written as (Saupe, 1968):

D
NH

= Dmax(Sxxx2 + Syyy
2 + Szzz

2), (1)

D′
NH

= Dmax(S
′
xxx ′2 + S′

yyy
′2 + S′

zzz
′2), (2)

where Dmax is the dipolar interaction constant, D
NH

,
an NH RDC value in medium 1, Sxx, Syy and Szz the
three diagonal elements of a diagonalized Saupe mat-
rix S (the alignment tensor) for medium 1. A Saupe
matrix (a 3 × 3 traceless and symmetric matrix) spe-
cifies the ensemble-averaged anisotropic orientation of
a molecule in the laboratory frame. x, y and z are, re-
spectively, the x, y, z−components of an internuclear
NH unit vector v = (x, y, z) in a principal order frame
(POF) which diagonalizes S. D′

NH
and S′

xx, S
′
yy , S′

zz of
S′ are the corresponding variables for medium 2 and
v′ = (x ′, y ′, z′) is the same NH unit vector in a POF
for medium 2. v and v′ are related by

v′ = R12v, (3)

where R12 is a relative rotation matrix between the two
POFs of medium 1 and 2. From Equations (1–3) we
have derived a quartic equation satisfied by x2:

f4u
4 + f3u

3 + f2u
2 + f1u + f0 = 0, (4)

u = 1 − 2
(x

a

)2
,

where the coefficients f0, f1, f2, f3, f4 and a are com-
puted from S, S′ and R12 which, in turn, can be
computed from the alignment tensors as detailed in
the Computation of alignment tensors section. Full
expressions for these coefficients are provided in Ap-
pendix A. From a given x, y can be computed directly
from Equation (1) by solving a quadratic equation.
Due to symmetry in Equations (1, 2) the number of
real solutions for v is at most 8 (Figure 4A), in agree-
ment with what has been found previously by other
methods (Al-Hashimi et al., 2000; Ramirez and Bax,
1998).
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Table 1. Distance restraints derived from NOEs. The distance re-
straints between HN or Hα and methyl groups are extracted from
the NOE table of the restraint file with PDB ID 1D3Z (Cornilescu
et al. 1998) for ubiquitin and are converted into the distances between
the two nuclei HN and Cα or between Cα and Cα for convenience.
A value of 8.0 Å is assigned to each NOE-derived distance using a
value of 5.0 Å for upper bound and 3.0 Å for pseudoatom correction

Residue No. Nucleus Residue No. Nucleus Distance

26 Cα 3 Cα 8.0 Å

27 HN 43 Cα 8.0 Å

26 Cα 15 Cα 8.0 Å

30 HN 15 Cα 8.0 Å

Computation of dihedral angles for a single residue

If the directions of any two vectors vi and vi+1 in
consecutive peptide planes i and i + 1 are known
we then showed that the intervening backbone angles
(φi ,ψi ) can be computed from the following two
simple trigonometric equations:

sin (φi + a1) = b1, sin (ψi + a2) = b2, (5)

where a1 and b1 are computed from the six backbone
angles (Figure 1 and Table 4) between two consecutive
residues and vi and vi+1, while a2 and b2 are com-
puted from the six angles, vi and vi+1 and a solution
for φi . The full expressions for a1, b1, a2 and b2 are
computed from backbone kinematics, based on 8 ro-
tations that transform a coordinate system (Figure 1)
defined in peptide plane i to an isomorphic system in
plane i+1, and are given in Appendix B. In the present
paper, vi and vi+1 are, respectively, the NH unit vec-
tors for residue i and i +1, which are both obtained by
solving Equation 4. Equation 5 can be solved exactly
for sin φi and sin ψi because Equation 5 is equivalent
to two quadratic equations (Appendix B). There are 2
possible solutions for (φi ,ψi ) angles from Equation 5
for each orientation of the peptide plane i. However,
there will be an infinite number of such solutions if
the orientation of the peptide plane i is not known.

Computation of (φ,ψ) angles for all the residues of a
structural fragment

As stated in the previous section, only after the pep-
tide plane i is known can we obtain a finite number of
solutions for the (φi ,ψi ) angles (up to 8 × 8 × 2: 8
solutions are possible for each NH vector, and, given
2 consecutive NH vectors, 2 solutions are possible for
the intervening (φ,ψ) angles). In fact, given the first

peptide plane all the possible (φ,ψ) angles of a frag-
ment can be computed by exploiting the following two
observations:
1. A peptide plane i with respect to a POF for me-

dium 1 can be determined by its NCα vector and an
NH vector from Equation 5.

2. A unique NCα vector for the peptide plane i+1 can
be computed from the NCα vector of the peptide
plane i and (φi ,ψi ).

Therefore, given the NCα vector of the first peptide
plane (called the first NCα vector for brevity) of a
fragment we can use Equations 4, 5 to compute, con-
secutively, all the possible discrete (φ,ψ) solutions
for all the residues of the fragment. Moreover, such
a scheme is ideally suited for employing a depth-first
search (DFS)2 strategy to select a best set of (φ,ψ)

angles, out of all possible such sets, for the frag-
ment based on some score function. The method for
computing the first NCα vector of a fragment will be
detailed in the Computation of an optimal first NCα

vector section.

The algorithm

Building upon our newly derived Equations 4, 5 and
the two observations in the previous section, we have
developed a novel algorithm for determining a 3-
dimensional backbone substructure consisting of the
α-helices and β-sheets using the following input: as-
signed backbone NH RDCs in two media, identified
α-helices and β-sheets with known hydrogen bonds
(H-bonds) between paired strands and very sparse
NOE distance restraints. Our algorithm is divided
into three stages (Figure 2): (I) computation of align-
ment tensors and an optimal first NCα vector, (II)
DFS-based refinement of secondary structure elements
(both α-helices and β-strands) and (III) backbone
structure determination. The alignment tensors and
the first optimal NCα vector from stage I are used in
stage II for computing all the backbone (φ,ψ) angles
of a structure element using RDCs alone. Their relat-
ive positions are determined in stage III using H-bonds
and NOE restraints. The interested reader can refer to
Appendix C for the tree data structure used for DFS
and a pseudocode of the algorithm for stage II.

Computation of alignment tensors

The algorithm begins with the computation of Saupe
matrices for both media using an ideal helix model
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Figure 1. The six backbone angles. The six angles (θ1,θ3,θ5,θ6,θ7 and θ8) required for computing the coefficients of the quartic equation
(Equation (5)) and for building α-helix and β-strand models. A plane angle (θ1, θ3, θ5 or θ7) is labeled with solid arrows pointing to its two
defining bond vectors while a dihedral angle (θ6 or θ8) is labeled with dashed arrows pointing to its three defining bond vectors. θ8 is the
dihedral angle between the plane defined by the vector from CO(i − 1) to N(i) and the NH vector, and the plane defined by the NH and NCα

vectors. The NH and NCα vectors are labeled with magenta arrows. +Y and +Z are, respectively, the y-axis and z-axis of a coordinate system
defined in peptide plane i and i + 1. The x-axis is defined based on right handedness.

built with the backbone (φ,ψ) = (−65.3◦, −39.4◦),
the six angles (Figure 1 and Table 4) and standard
values for bond lengths (Engh and Huber, 1991).
The (−65.3◦, −39.4◦) is the average of the back-
bone (φ,ψ) for α-helices over the PDB. The Saupe
matrices S for medium 1 and S′ for medium 2 are
computed from the model by a SVD method (Lo-
sonczi et al., 1999). They are diagonalized to yield,
respectively, three diagonal elements and four possible
rotation matrices R1 for medium 1, and three diagonal
elements and four possible matrices R2 for medium
2. One R1 (POF) is chosen arbitrarily for medium 1
for all subsequent computations. The relative rotation
matrix R12 between the POFs of medium 1 and 2 can
be computed from R12 = R2R−1

1 . The coefficients
of Equation (5) are computed from R12 and any two
diagonal elements for each medium. Out of sixteen
possible relative rotational matrices (i.e. R12) only
four represent different orientations and one of them
is chosen based on NOE distance restraints (detailed
in the backbone structure determination section).

In stage I, alignment tensors are refined as follows.
First, the helix structure is refined (as described in
the refinement of secondary structure elements sec-
tion) using only RDCs (Figure 2). In particular, the
helix refinement uses the alignment tensors previously
computed from an ideal helix and a first NCα vector
(computed from R1vn where vn is the first NCα vector

of the ideal helix). To improve accuracy, new align-
ment tensors are then computed by the SVD method
using the refined helix structure. The new tensors are
then used for computing all other secondary structure
elements.

Computation of an optimal first NCα vector

An optimal first NCα vector is computed using an m

residue fragment built with the average (φ,ψ) angles
for either an α-helix or a β-strand and standard bond
lengths and angles (Figure 1 and Table 4) (Engh and
Huber, 1991). A grid search for the orientation of the
fragment in a POF of medium 1, defined by a Euler
rotation matrix R(α, β, γ), is performed to minimize
the score function σRMS (α, β, γ):

σ2
RMS

(α, β, γ) = 1

m

m∑
i=1

(
(Dc

NH,i
(α, β, γ) − DNH,i)

2

+ (D′c
NH,i

(α, β, γ) − D′
NH,i

)2
)
, (6)

where DNH,i and D′
NH,i

are, respectively, the experi-
mental RDC values in medium 1 and 2, and Dc

NH,i

and D′c
NH,i

are the corresponding back-computed RDC
values using the alignment tensors computed from the
stage I and the three Euler angles (α, β, γ). An op-
timal first NCα vector of the fragment is computed
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Figure 2. A flow chart illustrating the algorithm. A chart illustrating the three major stages (delimited by two dashed lines) of the algorithm
beginning with the input RDC data and ideal helix and strand models to a final three dimensional backbone structure. RDCs refer to NH
RDCs measured in two media. As stated in the main text, to improve accuracy, alignment tensors are computed twice in Stage I. DFS refers to
depth-first search and SVD refers to singular value decomposition.

as R(α, β, γ)vn where the rotation matrix R(α, β, γ)

is the one which minimizes σRMS and vn is the first
NCα vector of the fragment before the minimization.
The minimum value σMIN of σRMS is the value used in
Equation (10) of the refinement of secondary structure
elements section. The refined fragment will have the
correct relative orientation with respect to the structure
element chosen to compute the alignment tensors.

Refinement of secondary structure elements

It is well known that given the orientation of the
first peptide plane of an m residue secondary struc-
ture element (fragment) its conformation can be spe-
cified uniquely by a sequence of (φ,ψ) angles:
(φ1,ψ1,φ2,ψ2, · · · ,φm−1,ψm−1), where (φi ,ψi )

are the backbone dihedral angles for residue i. We
call such a sequence a conformation vector. The DFS-
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based refinement (stage II) is a minimization searching
systematically for an NH vector of the first peptide
plane (since an optimal first NCα vector has been
determined) and a conformation vector such that the
model built from the first peptide plane and the con-
formation vector has (a) (φ,ψ) values as close as
possible to the average (φa,ψa) over the PDB for the
corresponding secondary structure type and (b) sim-
ultaneously fits the experimental RDC data as well
as possible. We call such a conformation vector an
optimal conformation vector. What we mean by re-
finement here is to optimize both the direction of
individual NH vectors and also the (φ,ψ) angles of
a fragment using only RDCs while leaving the bond
lengths and the six angles (Table 1 and Figure 4) fixed.
Formally, our algorithm minimizes a score function
T1:

T1 =
m−1∑
i=1

(
(φi − φa)

2 + (ψi − ψa)
2
)

+
m∑

i=1

((
Ds

NH,i
− DNH,i

)2

+
(
D′s

NH,i
− D′

NH,i

)2
)

, (7)

for a helix or a β-strand of a sheet chosen to be built
first. For the other β-strands of the sheet it minimizes
a score function T2:

T2 =
m−1∑
i=1

(
(φi − φa)

2 + (ψi − ψa)
2
)

+
m∑

i=1

((
Ds

NH,i
− DNH,i

)2

+
(
D′s

NH,i
− D′

NH,i

)2
)

+ TH , (8)

where

T
H
(φ1,ψ1, · · · ,φm−1,ψm−1) =

q∑
j=1

((
H

L,j
− H

L,a

)2 + (
H

A,j
− H

A,a

)2
)

, (9)

and where DNH,i and D′
NH,i

are, respectively, the ex-
perimental RDC values in medium 1 and 2, Ds

NH,i
and

D′s
NH,i

are the corresponding RDC values sampled from
Gaussian distributions simulating the experimental er-
rors (the experimental value and error are, respect-
ively, the mean and variance), H

L,j
and H

A,j
are,

respectively, the computed H-bond length and angle,
and HL,a and HA,a are the corresponding values for an

ideal H-bond, and q is the number of H-bonds between
the paired strands. During the refinement φa , ψa ,
DNH,i , D′

NH,i
, HL,a and HA,a are treated as constants

while Ds
NH,i

, D′s
NH,i

and the φi , ψi angles computed
from them are treated as variables.

The DFS-based refinement (stage II) is divided
into three phases (Figure 3). Phase I is the sampling
of RDC values in both media for every residue of
the fragment such that Equation (5) will produce a
solution for every NH vector and such that

mσ2
MIN

≥
m∑

i=1

((
Ds

NH,i
− DNH,i

)2

+
(
D′s

NH,i
− DNH,i

)2
)

, (10)

where σMIN is the minimum RMSD between the ex-
perimental RDCs and the RDCs back-computed from
an ideal helix by the SVD method as detailed in the
computation of alignment tensors section or from a β-
strand as detailed in the previous section. Phase II is
the computation of an NH vector for the first residue
and an optimal conformation vector from the two sets
of sampled RDCs together with an optimal first NCα

vector. Phase III is the construction of a model from
the NH and NCα vectors defining the first peptide
plane, and the optimal conformation vector. The first
two phases are repeated for the number of times equal
to the sampling size (see Appendix C for a pseudo-
code of the algorithm). In phase II, the set of all the
plausible conformation vectors are first computed by a
depth-first search (DFS) over all the possible combina-
tions of NH orientations from Equation 5. A plausible
conformation vector is defined as a vector with all its
m − 1 (φ,ψ) angles in the favorable Ramachandran
region for the corresponding secondary structure type.
The NCα vector of residue i + 1 is computed from an
NCα vector of residue i and the intervening (φi ,ψi )

angles. During the DFS every computed (φ,ψ) pair
is filtered through favorable Ramachandran regions.
An optimal conformation vector and its correspond-
ing first NH vector are computed from the set of all
the plausible conformation vectors by comparing their
scores computed according to either Equation 7 or 8.
Except for the β-strand chosen to be refined first the
hydrogen bond energy, TH in Equation 8, between
paired strands is also computed as a part of the score
as detailed in the next section after a new β-strand has
been built using the optimal conformation vector and
the first peptide plane defined by the first NH and NCα

vectors.
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Figure 3. A flow chart of a single step of the DFS-based refinement stage. The three major phases are delimited by two dashed lines. The
six angles (Figure 1 and Table 4) are defined in the main text. The quartic and trigonometric equations refer, respectively, to Equations 4, 5.
The Ramachandran filter represents filtering through the favorable Ramachandran regions and the Gaussian convolution corresponds to the
simulation of the experimental error by a Gaussian distribution with the experimental value (DNH,i or D′

NH,i) as its mean and the error as its
variance. Many such steps are required for refining a secondary structure element as shown by a dashed arrow.

In our implementation the average (φa,ψa) for α-
helices and β-sheets are set to be (−65.3◦, −39.4◦)
and (−120.0◦, 138.0◦), their respective averages over
the PDB. The values of H

L,a
and H

A,a
for an ideal H-

bond are set to be, respectively, 2.90 Å (between the
backbone atoms O and N) and 0.0◦ (the donor, hydro-
gen and acceptor atoms are collinear) (Stryer, 1994,
p. 8), their values for an ideal hydrogen bond. The
favorable Ramachandran region for an α-helix is set
to be [−100.0◦, −30.0◦] for φ and [−90.0◦, −15.0◦]
for ψ. For a β-strand the φ range is set to be [−170.0◦,
−70.0◦] and the ψ to be [80.0◦, 180.0◦].

Pairing of β-strands and computation of H-bond
energy

We begin the construction of a β-sheet by pairing a
strand A chosen to be refined first with a strand B
which is known to be A’s partner by secondary struc-

ture identification. The strand B is built during the
refinement using the optimal conformation vector and
the first NH vector. First, the average position of the
hydrogen bond partners of A is computed assuming
that the hydrogen bonds adopt an ideal configuration.
Next, the average position of the atoms of B involved
in hydrogen bonding with A is determined. Next, the
two average positions are superimposed by translation.
Finally, the hydrogen bond distances and angles are
computed, and their RMSDs from the ideal values
are computed from the overlayed structures accord-
ing to Equation 9. An entire sheet can be built by
successively adding its strands.

Backbone structure determination

The algorithm for positioning the oriented second-
ary structure elements is similar to that described by
Prestegard and coworkers (Fowler et al., 2000). Four
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Table 2. Diagonalized Saupe elements. The Ideal Helix and Refined Helix refer to the helix built, respectively, with
(φ,ψ) = (−65.3◦, −39.4◦) and the optimal conformation vector as detailed in the text. In (a) the comparison is between the
ideal and RDC-refined helices and the whole X-ray structure of human ubiquitin while in (b) the comparison is between
the three helices: the ideal, RDC-refined and the helix consisting of the ten residues (N25–E34) of the X-ray structure
(Vijay-Kumar et al., 1987). RDC1 and RDC2 are RDCs of medium 1 and 2, respectively. Protons in X-ray structure were
added with the program MOLMOL (Koradi et al. 1996)

Ideal helix Refined helix X-ray structure

Saupe elements (a) S1
xx 3.23 3.47 4.24

S1
yy 28.34 26.65 27.42

S2
xx 8.88 8.55 6.91

S2
yy 10.06 10.38 11.43

RMSD (b) Backbone atoms 0.25 Å 0.29 Å 0.0 Å

(φ,ψ) Angles (10◦, 9◦) (5◦, 6◦) (0◦, 0◦)

RDC1 0.39 Hz 0.12 Hz 1.43 Hz

RDC2 0.46 Hz 0.14 Hz 0.95 Hz

NOE-derived distances (Table 1) between an amide
proton and a Cα nucleus or between two Cα nuc-
lei, converted from the NOE restraints between amide
or alpha proton and methyl group (Cornilescu et al.,
1998), are employed to compute the relative posi-
tion of the helix (N25–E34) and the single sheet of
ubiquitin, which consists of five β-strands: Q2–T7,
K11–V17, Q41–A46, K48–E51 and S65–V70. First,
the algorithm computes the average da of the four
NOE distances and the average position of the four
nuclei of the helix involved in the NOE interactions.
In general, the NOE distances may be different from
one another so it is necessary to compute their average.
For convenience the vector from the average position
of the four nuclei of the helix to the average position
of the four nuclei of the sheet is defined as w. It has
length da . Next, a grid search is performed over the
orientation of w to compute the average position of
the four nuclei of the sheet (the position of the helix is
fixed here) to minimize the RMSNOE = ∑4

i=1(d
′NOE
i −

dNOE
i )2 between the computed distances d ′NOE

i and
the experimental NOE distance dNOE

i . This procedure
is also used to resolve the ambiguities in the relative
orientations of the helix and the sheet. Specifically,
the relative orientation with the smallest NOE viol-
ations (the smallest RMSNOE value) among the four
possible orientations is selected. The correct orienta-
tion between two paired β-strands can be chosen using
the hydrogen bond network between them.

Source of the data

The backbone NH RDC data in two different media
(medium 1 and 2 correspond, respectively, to those
measured in charged and uncharged bicelles), twelve
hydrogen bonds and four NOE restraints of the protein
human ubiquitin were extracted from the restraint file
with PDB ID 1D3Z (Cornilescu et al., 1998; Ottiger
and Bax, 1998) downloaded from the PDB (Berman
et al., 2000).

Results and discussion

In this section we first discuss the possible benefits of
exact solutions. Then, we demonstrate the successful
determination of a backbone substructure (consisting
of α-helices and β-sheets) of human ubiquitin with our
exact solution-based algorithm using NH RDCs in two
media and twelve H-bonds and four NOE restraints.

Equations for computing dihedral angles from RDCs

Our algorithm requires RDCs on a single backbone
vector type in two media, which is quite feasible con-
sidering that several media are available at present
(Al-Hashimi et al., 2000; Chou et al., 2001; Hansen
et al., 2000; Ramirez and Bax, 1998). A second set of
RDCs has been used, for example, to reduce degener-
acy (Al-Hashimi et al., 2000; Ramirez and Bax, 1998)
or to improve the precision of NMR determined struc-
tures (Clore et al., 1999). However, to our knowledge,
there are no known analytic expressions for computing
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either internuclear vectors or backbone (φ,ψ) angles
directly from RDCs when the POFs of medium 1 and
2 are not identical. Previously, numerical fitting has
been used to compute NH vector orientations (Bar-
bieri et al., 2002) and 2-dimensional grid-search has
been used to determine (φ,ψ) angles (Giesen et al.,
2003; Tian et al., 2001; Wang et al., 1998) when RDCs
are measured on at least three backbone vector types.
Scheraga and coworkers (Wedemeyer et al., 2002)
have derived a quartic equation for computing vector
orientations when the two POFs are identical. For
the general case when the two POFs are different they
suggest using 1-dimensional grid search to compute
vector orientations. Griesinger and coworkers (Meiler
et al., 2000) have derived an expression for computing
pairwise angular restraints between internuclear vec-
tors whose RDCs are measured in one medium. In
contrast, our equations (Equations 4, 5) are derived
to compute, exactly, the intervening backbone dihed-
ral angles between two consecutive residues whose
NH RDCs have been measured in two media. They
can not be used to compute the inter-vector angle
between two NH vectors. The advantages of exact
solution methods have been demonstrated by Cross
and coworkers (Bertram et al., 2000) for comput-
ing solid-state NMR structures and by Scheraga and
coworkers (Wedemeyer et al., 2002) for computing
solution NMR structures. The possible benefits of
exact methods include:
1. Exact solutions make it possible to characterize

the properties of the solutions. For example, the
number of solutions from Equation 5 can be 0,
2, 4, 6 or 8, in agreement with the previous res-
ults obtained by other methods (Al-Hashimi et al.,
2000; Ramirez and Bax, 1998; Wedemeyer et al.,
2002) (Figure 4A). Further, the average number of
real solutions (as opposed to complex) is close to
4, in agreement with what has been known in al-
gebraic geometry (Kac, 1948). Given the peptide
plane i the two possible (φi ,ψi ) solutions from
Equation 5 have very similar φi values (differing
by <10◦) but with opposite sign if the coefficients
of Equation 5 are computed using the averages
for the six angles (Table 4). In our implementa-
tion these average values were obtained from 23
ultra-high resolution X-ray structures with proton
coordinates (Table 4). Consequently, except for
glycine, all residues located in regular α-helices
and β-sheets have only one (φ,ψ) solution in the
favorable Ramachandran regions. And the solution
with positive φ value can be safely discarded for

a residue in regular α-helix or β-strand. Further,
for most residues in regular α-helices and β-sheets,
only a few of the 8×8×2 possible (φ,ψ) solutions
will fall into the favorable regions (Figure 5A).

2. With exact solutions it is possible to quantify
the contributions to the accuracy of the computed
(φ,ψ) angles from both the experimental errors in
RDCs (Figure 5B) and the statistical distributions
of the six angles (Table 4) required as additional
restraints in Equation 5. Among the six angles, the
dihedral angle θ6 (Table 4 and Figure 1), which
measures the deviation of an NH vector from the
peptide plane, has the largest variance (6.0◦) while
the other five have much smaller variances (<2.4◦)
(Table 4). Our results from exact solutions show
that the variation of this angle does not change the
φi value and only changes ψi by <10◦.

3. Exact solutions are expected to be useful for speed-
ing up the structure determination of both proteins
and nucleic acids using RDC and/or pseudocon-
tact shift restraints (Kemple et al., 1988) since
similar equations can be derived for computing
the corresponding vector orientation and dihedral
angle. As a demonstration we have shown (see the
Conformation and orientation of secondary struc-
ture elements section) that such exact solutions
make it feasible and efficient to search system-
atically through all the possible combinations of
(φ,ψ) solutions for a secondary structure element
to determine a conformation that best satisfies both
the experimental RDCs and has backbone (φ,ψ)

values as close as possible to the PDB averages
(Equation 7 or 8).

Computation of alignment tensors

For alignment tensor computation we take the advant-
age of a priori knowledge about secondary structure
elements. Specifically, we select a helix model con-
sisting of residues N25–E34 to be built and refined
first for their computation. In general, helices can be
identified easily, have less variations in local structure
than β-sheets do, are more stable, and their amide
protons are less labile than those in loops so the
experimental data have smaller errors (Wang et al.,
2001). Some concerns (Fowler et al., 2000) have been
raised about the accuracy of the computed Saupe mat-
rix because the NH bond vectors are near parallel in
a regular helix. However, our results show that the
variations in NH orientations in the ideal helix built
with (φ,ψ) = (−65.3◦, −39.4◦) are large enough to
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Figure 4. Solutions for NH unit vector direction. The 8 solutions for the NH unit vector of the residue I3 of ubiquitin without (A) and with (B)
experimental errors (±1.0 Hz) in RDCs. The x-axis and y-axis are, respectively, the y and z components of the three direction cosines. These
solutions are computed assuming a fixed pair of alignment tensors.

Table 3. Backbone RMSDs of fragments. The backbone RMSDs between an RDC-refined fragment consisting of the helix
(N25–E34) and a β-strand, and the corresponding fragment from the X-ray structure of ubiquitin (Vijay-Kumar et al., 1987)

β-strand Q2–T7 K11-V17 Q41–A46 K48–E51 S65–V70

Backbone RMSD 1.25 Å 0.87 Å 0.82 Å 0.52 Å 1.06 Å

yield a reasonably accurate initial tensor estimation.
In fact, the diagonal Saupe elements estimated us-
ing the ideal helix are quite close to those computed
from the entire structure (Table 2). The final set of
alignment tensors are computed from an RDC-refined
helix model. However, the diagonalized Saupe ele-
ments computed from the refined model differ by less
than 7 percent from those computed from the ideal
helix (Table 2). No further refinement is necessary
since the RMSD between the RDCs back-computed
from the refined model and the experimental RDCs
is <0.14 Hz, very close to the experimental error
(Cornilescu et al., 1998; Ottiger and Bax, 1998),
and backbone RMSDs between any two of the three
helices are rather small: <0.29 Å. Note that the RMSD
between the RDCs back-computed from the refined
helix and the experimental RDCs is much smaller
than the RMSD between the RDCs back-computed
from the helix of the X-ray structure (Vijay-Kumar
et al., 1987) and the experimental RDCs (Table 2).
Our results show that it is possible, first, to construct
a helix model which can fit experimental RDCs very
well and, then, to compute reasonably accurate align-
ment tensors from the model. However, our method
for computing alignment tensors may not always work
well when the helix axis is parallel to the alignment

tensor. If this is the case one may use other methods
available at present (Clore et al., 1998; Nomura and
Kainosho, 2002) for the initial estimation of alignment
tensors.

Conformation and orientation of secondary structure
elements

It is well known that at least 3 RDCs per peptide
plane are required to determine the plane’s orienta-
tion and subsequently a backbone fold (Quine et al.,
1997; Wang et al., 1998). However, our analyses (see
the Theoretical background section) show that given
NH RDCs in two media there will be only a finite num-
ber of (φ,ψ) solutions and backbone conformations if
(a) the orientation of the first NCα vector is known, (b)
the RDCs are perfectly accurate (without experimental
errors), (c) the alignment tensors are known, and (d)
there are no missing RDCs for the entire protein se-
quence. Hence, in principle, a backbone structure can
be computed by a grid-search for the first NCα vector
followed by a systematic search to select a best con-
formation out of the finite number of all the possible
conformations using a simple score function. How-
ever, such a score function must include terms other
than the term for RDCs since there are a large (but fi-
nite) number of conformations that are consistent with



233

Figure 5. Backbone (φ,ψ) solutions. The backbone (φ,ψ) solutions between two residues (Q2–I3) of ubiquitin without (A) and with (B)
experimental errors (±1.0 Hz) in RDCs. The x-axis and y-axis are the φ and ψ, respectively. The favorable Ramachandran region [−170.0◦,
−70.0◦] for φ and [80.0◦, 180.0◦] for ψ of β-sheet are delimited by dashed lines. In (B) only the (φ,ψ) angles in the favorable region are
shown, the φ range in the x-axis is from [-180◦, 0◦] and the ψ range in the y-axis from [0◦, 180◦]. In (A) the three stars indicate (φ,ψ) angles
in the favorable region and the empty circle represents the (φ,ψ) values in the X-ray structure. The 48 solutions (points) come from 6 × 4 × 2,
i.e., 6 solutions for the unit NH vector of Q2 and 4 solutions for I3. These solutions are computed assuming a fixed pair of alignment tensors.

2 RDCs per residue. Furthermore, in practice, the ex-
perimental RDC value has error (Figures 4B and 5B)
and some residues may have only one observable RDC
and some may have none. To deal with the require-
ment for additional terms in the score function, the
deficiency in the number of RDC restraints, and also
with the experimental errors, we have included a term
((φi −φa)

2 + (ψi −ψa)
2) for backbone (φ,ψ) angles

(Equations 7, 8) and, for β-sheets only, an additional
term Th for H-bonds (Equation 8). The regularity of α-
helices and β-sheets is well-known, and it is relatively
straightforward to identify them by NMR. The vari-
ances of the backbone (φ,ψ) angles are, respectively,
about 11◦ for a helix and less than 25◦ for a β-sheet.
One concern about these terms is that the individual
(φ,ψ) angles of the computed model for a fragment
may be artificially forced to assume the average (φ,ψ)

values for α-helices or β-sheets. However, the salient
feature of our algorithm is that the solution model is
computed by searching for an optimal conformation
with respect to all of its RDCs rather than any in-
dividual RDC using score functions (Equations 7, 8)
having terms for RDCs as well as (φ,ψ) angles and
H-bonds. Therefore, an individual dihedral angle of
a refined secondary structure element computed by
our algorithm may differ from the average value by
as much as 29◦ (Figure 6) and differ from the corres-
ponding value in x-ray structure by more than >10◦.
The same is true for H-bonds: in the final refined β-
sheet both the H-bond distances and directions deviate

from their ideal values. Nevertheless, the relative ori-
entations between the helix (N25–E34) and each of
the five strands of the single sheet, as measured by
backbone RMSDs, agree well with those in the X-
ray structure (Table 3 and Figure 7). We have not yet
tested our algorithm with a long kinked helix though,
in principle, our score function should still work. Fur-
thermore, the kink could be identified by comparing
the alignment tensors computed from different sets of
five consecutive residues (Wang et al., 2001) along the
sequence, if dynamics can be ignored. We can then,
in principle, divide the kinked helix into independent
pieces and refine them independently.

Our algorithm can not only refine α-helices but
also β-sheets (both parallel and anti-parallel), which
extends fundamentally the previous method (Fowler
et al., 2000) targeting only entirely helical proteins
and makes our algorithm suitable for determining the
folds of a large majority of proteins. Unlike α-helices,
β-strands are often twisted in globular proteins so it
is important to refine them accurately (using stage
II of our algorithm) from RDC data. For example,
the backbone RMSD between the RDC-derived frag-
ment consisting of the β-strand (Q2–T7) and helix
(N25–E34), and the corresponding fragment in the
X-ray structure, changed from 0.87 Å to 0.75 Å. How-
ever, the RMSDs between the RDCs back-computed
from the β-strand (Q2–T7) and the experimental RDCs
dropped from 2.86 Hz to 0.68 Hz for medium 1 and
from 3.18 Hz to 1.00 Hz for medium 2.
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Table 4. Six backbone angles. The means and variances of the six angles between two consecutive residues
used to compute the coefficients of Equation 5. They are extracted from 23 ultra-high resolution (≤1.0Å)
X-ray structures with proton coordinates. Their PDB IDs are 3AL1, 1BXO, 1CEX, 1C75, 1GDQ, 1G66,
1GDN, 1GCI, 2FDN, 1HJ9, 1IXH, 1GQV, 1IC6, 2ERL, 1HJ8, 1JFB, 1EJG, 1RB9, 3PYP, 1FY5, 1GVK,
1KQP and 1LQT

Name Identity Mean Variance

θ1 HN(i) − N(i) − Cα(i) 119.14◦ 1.20◦
θ3 N(i) − Cα(i) − CO(i) 110.94◦ 2.39◦
θ5 Cα(i) − CO(i) − N(i + 1) 116.82◦ 1.88◦
θ6 Cα(i) − CO(i) − N(i + 1) − HN(i + 1) −0.75◦ 6.07◦
θ7 CO(i) − N(i + 1) − HN(i + 1) 119.10◦ 1.10◦
θ8 CO(i − 1) − N(i) − Cα(i) − HN(i) 0.00◦ 0.10◦

Figure 6. Distributions of backbone (φ,ψ) angles. The distributions of backbone (φ,ψ) angles of an α-helix (N25–E34) (A) and a β-strand
(K11–V17) (B) both computed by our algorithm. The two dashed lines in (A) and (B) correspond, respectively, to (−63.4◦, −39.4◦) and
(−120.0◦, 138.0◦), the (φ,ψ) averages of an α-helix and a β-strand over the PDB.

There exist four possible relative orientations
between any two fragments when only one set of
RDCs is used. It has been demonstrated that a
second set of RDC data from a different medium can
be employed to resolve the orientational degeneracy
between two fragments with known structures (Al-
Hashimi et al., 2000). However, we found that when
the experimental errors in RDCs are taken into account
it is possible to build four structures with different re-
lative orientations between the helix (N25–E34) and
the single sheet in ubiquitin. The correct orientation
can be computed using four NOEs between the helix
and the sheet (Table 1).

Computation of β-sheets

Additional translational restraints are required to pair
β-strands to form a sheet since RDC data provides only
orientational restraints. In our implementation, the hy-
drogen bonds between β-strands were used. Hydrogen

bonds can be derived, for example, from backbone
resonance and NOE assignment programs such as Jig-
saw (Bailey-Kellogg et al., 2000) or inferred from the
identification of a β-sheet structure. Among the five
strands of the single β-sheet the strand consisting of
residues Q2–T7 is chosen to be computed first. The
other four strands are computed in the order: Q2–T7
to K11–V17, Q2–T7 to S65–V70, S65–V70 to Q41–
A46 and Q41–A46 to K48–E51 using, respectively, 4,
3, 3 and 2 hydrogen bonds. The order is not important
since the orientation of each strand is determined only
by its RDC values, not by hydrogen bonds between
pairing strands. No significant changes in orienta-
tion were observed when each strand was chosen to
be refined separately without using hydrogen bonds
between them. The computed sheet superimposes very
well with the corresponding one in the X-ray structure
with a backbone RMSD = 1.17 Å (Figure 7).
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Figure 7. Stereo view of backbone superposition. The portion of RDC-derived structure (blue) consisting of the helix (N25–E34) and the single
sheet can be superimposed with the corresponding portion (magenta) from the X-ray structure with a backbone RMSD = 1.21 Å. The single
sheet is composed of five strands (Q2–T7, K11–V17, N41–F45, K48–E51 and S65–V70), which can be superimposed with the corresponding
sheet from the X-ray structure (Vijay-Kumar et al. 1987) with a backbone RMSD of 1.17 Å.

Backbone structure determination

The last stage of our algorithm (stage III of Fig-
ure 2) is to determine a three dimensional backbone
structure from oriented secondary structure elements.
In principle, only three distance restraints are re-
quired to position two oriented elements. However, we
found that no triple of the NOE-derived distances in
Table 1 could correctly position the helix (N25–E34)
relative to the single sheet in ubiquitin. Neverthe-
less, they could be correctly positioned using all four
NOE distances. These NOE restraints between amide
protons and methyl groups of regular secondary struc-
tures can be obtained, for example, from a labeling
strategy introduced by Kay and coworkers (Gardner
and Kay, 1997). The backbone RMSD between the
RDC-derived structure consisting of the helix (N25–
E34) and the single sheet, and the corresponding por-
tion of the X-ray structure, is only 1.21 Å (Figure 7).
Moreover, the computed structure satisfies the experi-
mental RDC data very well. The RMSD between the
RDCs back-computed from the RDC-derived struc-
ture and the experimental RDCs is only 0.64 Hz for
medium 1 and 0.87 Hz for medium 2. The RDC-
derived backbone substructure defines completely the
fold of ubiquitin even though the structures of the in-
tervening loops and turns have not been determined.
The accuracy (1.2 Å) is the same as that (1.2 Å) re-
ported for the fold of the protein GB1 (Clore et al.,
1999), which shares a fold with ubiquitin, determined
by XPLOR (Brünger, 1993) using three RDCs per
residue. However, we emphasize that our results show
that it is possible to build a substructure consisting

of α-helices and β-sheets which can fit experimental
RDCs very well and overlay with the X-ray structure
(Vijay-Kumar et al., 1987) very well. We do not claim
that our substructure is more accurate than an X-ray
model with 1.8 Å resolution since it is rather tricky
to compare the goodness of fit to experimental RDCs
between the two substructures due to the uncertainty in
the x-ray model. A reasonable estimation of a proton
position from an X-ray model with 1.8 Å resolution
is about 0.30 Å (Wang et al., 2001), which corres-
ponds to a deviation of 8.6◦ of an NH vector from
the position given in the x-ray model. Stage III of our
algorithm (see Figure 2 and the Algorithm section) is,
in principle, a rigid-body modeling method and thus is
similar to several previous methods for fold prediction
and recognition (Kolinski and Skolnick, 1998; Yue
and Dill, 2000), to an NMR structure-determination
procedure (Fowler et al., 2000) for assembling known
secondary structure elements into a tertiary structure,
and to a method used in the docking program HAD-
DOCK (Dominguez et al., 2003). Our algorithm is
slightly different in that (a) oriented secondary struc-
ture elements (both α-helices and β-sheets) are refined
by RDCs before positioning, and (b) stage III can
position not only oriented α-helices but also oriented
β-sheets.

Extensions and limitations

The NMR data required by our algorithm can be re-
corded on an 15N singly labeled sample, which may
be significant for high-throughput fold determination.
However, in practice, for a protein with more than
100 residues, it may be easier or necessary to use
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15N and 13C double labeling to assign backbone reson-
ances and to identify secondary structure elements. In
fact, with double labeling it is rather straightforward
to measure more than two RDCs per residue. Addi-
tional RDCs, if available, can be easily incorporated
into our algorithm to increase the accuracy of the com-
puted (φ,ψ) angles and to eliminate the requirement
that the computed α-helix or β-strand have backbone
(φ,ψ) values as close as possible to the PDB averages.
The focus of the current paper is to present the deriv-
ation of low-degree polynomials used for computing,
exactly, the internuclear vector and backbone (φ,ψ)

angles from two RDCs per residue and to demonstrate
the possibility of computing a backbone substruc-
ture from those RDCs using an algorithm built upon
exact solutions and systematic search. In principle,
these low-degree polynomials can be easily incorpor-
ated into a structure determination algorithm using
restrained molecular dynamics (MD) in torsion angle
space such as DYANA (Güntert et al., 1997). In fact,
a module with NH orientation obtained from RDCs
by numerical fitting has been implemented recently in
DYANA by Luchinat and coworkers (Barbieri et al.,
2002). Compared to the restrained MD with simulated
annealing (SA) approaches (Brünger, 1993; Güntert
et al., 1997; Clore et al., 1999; Giesen et al., 2003; Hus
et al., 2001), the novelty of our algorithm lies in how
the input data (RDCs) are used to limit the search
space and how a global minimum is computed:
1. In our algorithm, the space of solutions is, a pri-

ori, explicitly restricted by the data: first, the space
of NH internuclear bond vectors is restricted to a
set of finite solutions. This, in turn, kinematically
restricts the space of backbone dihedral angles to
a finite set before a conformation is computed. In
contrast, in restrained MD/SA, the space of solu-
tions is implicitly restricted by an energy function
that penalizes those computed conformations for
which the back-calculated and experimental RDCs
disagree.

2. In a restrained MD/SA approach, MD is used as
a minimization tool to solve a multiple variable
minimization problem. Since there are many local
minima a heuristic search such as SA is, in gen-
eral, used to search for the true global minimum.
However, since SA is a non-deterministic, iterative
approach that samples the search space stochastic-
ally, the computed minimum is most likely to be
only a local minimum. In other words, a structure
computed by such an algorithm is not guaranteed
to be the true global minimum even with perfect

data. In contrast, our algorithm is deterministic,
non-iterative and combinatorially precise, thus, if
the input data (experimental RDCs) are perfectly
accurate (without any experimental error) our sys-
tematic search method is guaranteed to find the true
global minimum. The advantages of systematic
search vs. heuristic search have been previously
described (see, for example, Rienstra et al. 2002).

The computational and modeling benefits of exact
solutions have been described by Cross and cowork-
ers (Bertram et al., 2000) for computing solid-state
NMR structures and by Scheraga and co-workers (We-
demeyer et al., 2002) for computing the backbone
structure of ubiquitin in solution using five RDCs
in one medium. However, in the former a Monte-
Carlo method is used to search over possible con-
formational space and in the latter final structures are
refined by ROSETTA (Rohl and Baker, 2002) which
uses, first, a fragment replacement method (Delaglio
et al., 2000) to reduce the search space, then, a
Monte-Carlo Method to search over the reduced con-
formation space. Systematic search has proved useful
in solid-state NMR structure determination (Rienstra
et al., 2002) for a tripeptide. However, Griffin and co-
workers did not derive or employ exact solutions. Our
algorithm is the first NMR structure determination al-
gorithm that uses both exact solutions and systematic
search.

The running time of our algorithm (see Appendix
D for an analysis of the algorithmic complexity and
performance), about 45 min for computing a 39-
residue substructure of ubiquitin, is comparable to
the time needed by a full-blown structure determina-
tion algorithm such as XPLOR (Brünger, 1993) using
many NOEs and dihedral angle restraints. As is well
known, a systematic search over the entire solution
space needs more time than a heuristic search which
samples the space stochastically. However, with ex-
act solutions and a pruning strategy based on the
Ramachandran plot our algorithm managed to com-
pute the substructure of ubiquitin in a comparable
time. Furthermore, months of time could be saved by
avoiding the assignments of large number of NOEs
involving sidechain protons in order to compute an ac-
curate structure using a full-blown, traditional method.
In addition, hours of spectrometer time may be saved
since fewer NMR experiments are needed and single
labeling is less expensive than double labeling, in
general.
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Conclusions

We have described a novel algorithm for determining
a protein backbone structure by solution NMR spec-
troscopy, using almost exclusively angular restraints
from RDCs measured on a single bond vector type
(NH) in two media, plus very sparse distance re-
straints. The algorithm is built upon our newly-derived
equations for computing (φ,ψ) angles, exactly and
in constant time, from two RDCs per residue. The
proposed exact solution methodology is rather general
and can be applied to speed up the structure determin-
ation of both proteins and nucleic acids from RDCs in
two media since similar equations can be easily de-
rived to compute either the backbone and sidechain
dihedral angles in proteins, or the backbone torsion
and χ angles in nucleic acids.

We have also shown that the exact solutions make
it feasible to design a novel DFS-based minimization
algorithm to compute efficiently both the orientations
and conformations of not only α-helices but also β-
strands using only RDCs in two media. Further, we
demonstrated that, after the orientations of α-helices
and β-strands are calculated from NH RDCs, a β-
sheet can be computed from its constituent strands
using hydrogen bonds, and that the three-dimensional
backbone substructure consisting of both α-helices
and β-strands can be determined by adding a minimum
number of NOE distances. Our success in computing
such a substructure using only two RDCs per residue
and very sparse distance restraints shows that solution
NMR spectroscopy can play a major role in determin-
ing protein structures rapidly and inexpensively, which
should be important in structural genomics.

Supporting Information

The software is available by contacting the authors,
and is distributed under the Gnu Public License (Gnu,
2002).

Notes

1. A constant-time, or O(1) algorithm (Cormen et al., 2001) for
computing the possible (φ,ψ) solutions or internuclear bond
vectors for a single residue always takes a fixed (i.e., constant)
number of steps, and this (constant) number of steps depends
neither on a grid nor upon its resolution, nor upon the size n of
the protein.

2. A depth first search (DFS) visits all the vertices in a tree (Cor-
men et al., 2001). When choosing which edge to explore next,
this algorithm always chooses to go ‘deeper’ into the tree. That
is, it will pick the next adjacent unvisited vertex until reaching a
vertex that has no unvisited adjacent vertices. The algorithm will
then backtrack to the previous vertex and continue along any as-
yet unexplored edges from that vertex. After DFS has visited all
the reachable vertices from a particular source vertex, it chooses
one of the remaining undiscovered vertices and continues the
search.
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Appendix A: A quartic equation for computing an
internuclear vector

In this section we prove that the direction of an inter-
nuclear vector v = (x, y, z) can be computed from
the solutions to a quartic equation if its corresponding
RDCs are measured in two different aligning media.
From the standard RDC equation (Saupe, 1968) we
have

DNH = Sxxx
2 + Syyy2 + Szzz

2

D′
NH

= S′
xxx

′2 + S′
yyy ′2 + S′

zzz
′2


 x ′

y ′
z′


 = R12
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 x
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 x

y

z


 .

The symbols have the same meaning as in Equations 1,
2 of the section Computation of vector orientations of
the main text. Here, for clarity the dipolar interaction
constant Dmax is assumed to be 1.
Eliminating x ′, y ′ and z′ through squaring and substi-
tution we obtain

r2 = a2x
2 + b2y

2 + c1xy + c2xz + c3yz (A1)

r1 = a1x
2 + b1y

2, (A2)

where

a2 = (S′
xx − S′

zz)(R
2
11 − R2

13)
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+ (S′
yy − S′

zz)(R
2
21 − R2

23)

b2 = (S′
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2
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2
13
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zz)R
2
23

a1 = Sxx − Szz

b1 = Syy − Szz

r1 = DNH − Szz.

Eliminating z from Equation A1 through squaring and
substitution we obtain

d8x
4 + d7x

3y + d6x
2y2 − d5x

2 + d4xy3 − d3xy

− d2y
2 + d1y

4 + d0 = 0 (A3)

where

d8 = a2
2 + c2

2

d7 = 2a2c1 + 2c2c3

d6 = c2
1 + 2a2b2 + c2

2 + c2
3

d5 = 2a2r2 + c2
2

d4 = 2b2c1 + 2c2c3

d3 = 2r2c1 + 2c2c3

d2 = 2r2b2 + c2
3

d1 = b2
2 + c2

3

d0 = r2
2

Equation A3 is a degree 8 monomial in x after direct
elimination of y using Equation A2. However, it can
be reduced to a quartic equation by substitution since
only the terms with the degrees of 0, 2, 4 and 8 appear
in it.
We introduce new variables t and u:

x = a sin t (A4)

y = b cos t (A5)

u = cos 2t, (A6)

where a =
√

r1
a1

=
√

r−Szz

Sxx−Szz
, b =

√
r1
b1

=
√

r−Szz

Syy−Szz

are two constants and r1, a1 and b1 are all negative
if we choose Szz = max (|Sxx |, |Syy |, |Szz|). Through
algebraic manipulation we obtain

f4u
4 + f3u

3 + f2u
2 + f1u + f0 = 0, (A7)

where

f4 = e2
1 + e2

2

f3 = 2e1e3 + 2e2e4

f2 = 2e1e0 + e2
3 + e2

4 − e2
2

f1 = 2e3e0 − 2e2e4

f0 = e2
0 − e2

4

e4 = d7a
3b + d4ab3 + 2d3ab

e3 = 2(d1b
4 + d2b

2 − d5a
2 − d8a

4)

e2 = d4ab3 − d7a
3b

e1 = d8a
4 + d1b

4 − d6a
2b2

e0 = 4r2
2 + d8a

4 + 2d5a
2 + 2d2b

2 + d1b
4

+ d6a
2b2.

Finally, since u = 1−2( x
a
)2, x2 also satisfies a quartic

equation. The y-component of the unit vector v can be
computed from Equation A2.

Appendix B: Simple trigonometric equations for
computing dihedral angles

In this section we prove that if the directions of any
two vectors in consecutive peptide planes i and i + 1
are known, then the intervening backbone dihedral
angles (φi,ψi ) satisfy simple trigonometric equations.
The proof is given specifically for two NH bond
vectors. We derive equations in a coordinate system
defined on a peptide plane i with +Z-axis along the
bond vector HN (i)→N(i) (the symbol → means from
atom HN (i) to atom N(i)), and +Y-axis in the peptide
plane i such that the angle between +Y and the bond
vector N(i) → Cα(i) is <90◦. The +X-axis is defined
based on the right-handedness.
From protein backbone geometry the two NH vectors
vi and vi+1 of the residues i and i+1 can be related by
8 rotation matrices (Figure 1) between two coordinate
systems defined, respectively, in the peptide planes i

and i + 1 as described in the above.

vi = Rvi+1, (B1)

where

R = Rx(θ7)Ry(θ6)Rx(θ5)Rz(ψi + π)Rx(θ3)

Ry(φi )Ry(θ8)Rx(θ1), (B2)

where

Rx(θ) =

 1 0 0

0 cos θ sin θ

0 − sin θ cos θ



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Ry(θ) =

 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ




Rz(θ) =

 cos θ sin θ 0

− sin θ cos θ 0
0 0 1




the six angles θ1, θ3, θ5, θ6, θ7 and θ8 (Table 4 and
Figure 1 of the main text) are given so Rl =
Rx(θ7)Ry(θ6)Rx(θ5) and Rr = Ry(θ8)Rx(θ1) are
two 3 × 3 constant matrices. The backbone dihedral
angles φi and ψi are defined according to the standard
convention.
We define two new vectors w1 = (x1, y1, z1) and
w2 = (x2, y2, z2) by

w1 = Rl
−1vi

w2 = Rrvi+1,

then we have

x1 = −(cos φi cos ψi + sin θ3 sin φi sin ψi ) x2

− cos θ3 sin ψi y2

+ (cos ψi sin φi − cos φi sin θ3 sin ψi ) z2 (B3)

y1 = (cos φi sin ψi − sin θ3 sin φi cos ψi ) x2

− cos θ3 cos ψi y2

− (sin φi sin ψi + cos φi sin θ3 cos ψi ) z2 (B4)

z1 = sin φi cos θ3 x2 − sin θ3 y2

+ cos φi cos θ3 z2. (B5)

By Equation (B5) and through algebraic manipulation
and trigonometric identities we arrive at the following
simple trigonometric equation for the φi angle:

sin (φi + a1) = sin φi cos a1 + cos φi sin a1

= b1, (B6)

where

b1 = z1 + y2 sin θ3√
(x2 cos θ3)2 + (z2 cos θ3)2

cos a1 = x2 cos θ3√
(x2 cos θ3)2 + (z2 cos θ3)2

sin a1 = z2 cos θ3√
(x2 cos θ3)2 + (z2 cos θ3)2

.

Here, one need not to be concerned with the sign of
square roots since simultaneously flipping the signs

of b1, cos a1 and sin a1 terms will not change Equa-
tion B6.
Substituting the computed φi value into Equation B4
and through similar algebraic manipulation and trigo-
nometric identities we arrive at the following simple
trigonometric equation for ψi :

sin (ψi + a2) = b2, (B7)

where both b2 ≤ 1 and a2 are computed from
y1, x2, y2, z2, θ3 and φi . These two simple trigo-
nometric equations can be solved exactly. They are
equivalent to quadratic equations as can be proved
easily by the following substitution for the sin φi and
cos φi in Equation B6:

w = tan
φi

2
, sin φi = 2w

1 + w2
,

cos φi = 1 − w2

1 + w2 , (B8)

and by a similar substitution for the sin ψi and cos ψi

in Equation B7. There are only two independent solu-
tions for (φi ,ψi ) angles given two known NH vectors
if the orientation of the first peptide plane is also
known. In our implementation the first peptide plane
is specified by an NH vector and an NCα vector, where
the former is solved from Equation 5 and the latter is
computed by solving an optimization problem (see the
section Computation of an optimal first NCα vector of
the main text).

Appendix C: A data structure and pseudocode for
the refinement of a secondary structure element

In the following we describe a data structure and
pseudocode for Stage II of our algorithm (see the sec-
tion Refinement of secondary structure elements of the
main text): the refinement of an m-residue secondary
structure element based on a depth-first search (DFS).
The data structure for the search over all the possible
combinations of directions (cross product) of the m

NH unit vectors obtained from Equation 4 is a tree
constructed as follows. The height of the tree is m

for an m-residue fragment and the first residue cor-
responds to depth 1. Each node at depth i corresponds
to an NH vector from Equation 4 for residue i. The
children of each node at depth i are all the NH solu-
tions for residue i + 1. During the DFS backbone
(φ,ψ) angles are computed from the j th member of
the NH solution set at depth i and the kth member of
the NH solution set at depth i + 1. A single step of
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Figure 8. Superposition of backbone structures. The superposition
of 20 RDC-refined fragments consisting of the helix (N25–E34)
(blue) and the β-strand (Q2–T7) (magenta) with pairwise backbone
RMSD of 0.31 Å ± 0.14 Å. These structures were generated with
the same variance (1.0 Hz) for error distributions and the same
sampling size (1024) but using 20 different seeds for a random
number generator.

the DFS-based refinement is shown in Figure 3 of the
main text. The pruning afforded by the Ramachandran
filter occurs in three places during the refinement. At
each step, if the computed (φ,ψ) value falls inside
the favorable Ramachandran region the DFS continues
using the kth member at depth i + 1, otherwise, the
subtree rooted at the kth member of the NH solution
set at depth i + 1 is pruned and the DFS continues
immediately at the (k + 1)th member. If none of the
(φ,ψ) angles computed from the cross product of the
j th member of the NH solution set at depth i and all
the members of NH solution set at depth i + 1 falls
into the favorable region, the subtree rooted at the j th
member at depth i is pruned and DFS continues imme-
diately at the (j + 1)th member at depth i. If none of
the (φ,ψ) angles computed from the cross product of
the two NH solution sets at depth i and i + 1 falls into
the favorable region the subtree at depth i−1 rooted at
the parent of the current NH solution set at depth i is
pruned and the DFS continues immediately at the next
member of the NH solution set at depth i − 1.

Appendix D: Algorithmic complexity and
performance

The complexity analysis of the algorithm is as follows.
The Saupe matrices, the coefficients of the quartic and
quadratic equations and their solutions can all be com-
puted in O(1) time. An initial model with m residues
can be built in O(m) time. The search for an op-
timal first NCα vector (see the section Computation
of an optimal first NCα vector of the main text) takes

O(mk3
1) time on a k1 × k1 × k1 grid. In practice, it

takes less than one minute on a 180×90×180 grid on
a Pentium 4 (2.4 GHz) Linux workstation. The search
for relative positions among RDC-derived structure
elements using NOE distances (see the section Back-
bone structure determination of the main text) takes
O(lk2

2) time on a k2 × k2 grid with l NOEs. In prac-
tice, it takes less than one second on a 90 × 180
grid. The secondary structure determination step takes
O(k16m) time in the worst case where k is the res-
olution of a grid search over a Gaussian distribution
simulating the experimental errors. With a perfect in-
put (RDCs without experimental errors) our algorithm
for secondary structure determination is guaranteed
to find a global minimum. However, in practice we
must perturb the experimental RDC values using an
error model. In summary, the total run time of the al-
gorithm is O(n(lk2

2 + mk3
1 + k16m)) for n fragments.

In practice, the grid search over the Gaussian distri-
bution was implemented as a random sampling. For
each sampled set consisting of a RDC value for every
residue of a fragment our algorithm is still guaranteed
to find a global minimum. Further, our results show
that the algorithm converges quickly in practice when
computing both regular α-helices and β-sheets. For
example, a sample size of 2048 is large enough to gen-
erate conformations with pairwise backbone RMSD
<0.50 Å for both the helix (N25–E34) and any of the
five strands (see Figure 8 for an example). The DFS
step for computing all plausible conformation vectors,
though having exponential running time in the worst-
case, is quite efficient in practice since a vast majority
of elements in the cross product of the possible NH
directions were pruned very early on. For example,
the average branching factor (i.e. the exponent) for a
set of sampled RDCs yielding a plausible conforma-
tion vector for the helix is only 1.03, thus only a few
plausible conformation vectors can be computed from
such a set. Further, our algorithm (see Figure 1 and
the section Algorithm of the main text), first divides an
entire protein into secondary structure elements, then
computes each of them individually. Even though n

gets larger as a protein gets larger, m, the size of a
strand or helix, will typically not be arbitrarily large.
Therefore, we anticipate that our algorithm will have
applications for the determination of backbone folds
of large proteins using mainly RDC data. In summary,
despite the worst-case exponential running time in m

the DFS-based minimization for computing an optimal
conformation vector takes, in practice, only several
minutes for either a helix or any of the five strands. In
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total, our algorithm takes about 45 min to compute the
backbone substructure of a 39-residue portion of ubi-

quitin consisting of a helix (N25–E34) and the single
sheet with five strands.



242

References

Al-Hashimi, H.M., Valafar, H., Terrell, M., Zartler, E.R., Eidsness,
M.K. and Prestegard, J.H. (2000) J. Magn. Reson., 143, 402–
406.

Andrec, M., Du, P. and Levy, R.M. (2001) J. Biomol. NMR, 21,
335–347.

Bailey-Kellogg, C., Widge, A., Kelley, J.J., Berardi, M.J., Bush-
weller, J.H. and Donald, B.R. (2000) J. Comput. Biol., 7,
537–558.

Barbieri, R., Bertini, I., Cavallaro, G., Lee, Y., Luchinat, C. and
Rosato, A. (2002) J. Am. Chem. Soc., 124, 5581–5587.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N.,
Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) Nucl.
Acids Res., 28, 235–242.

Bertram, R., Quine, J.R., Chapman, M.S. and Cross, T.A. (2000) J.
Magn. Reson., 147, 9–16.

Brünger, A.T. (1993) XPLOR: A System for X-Ray Crystallography
and NMR, Yale University Press, New Haven.

Chou, J.J., Gaemers, S., Howder, B., Louis, J.M. and Bax, A. (2001)
J. Biomol. NMR, 21, 377–382.

Clore, G.M., Gronenborn, A.M. and Bax, A. (1998) J. Magn.
Reson., 133, 216–221.

Clore, G.M., Starich, M.R., Bewley, C.A., Cai, M.L. and
Kuszewski, J. (1999) J. Am. Chem. Soc., 121, 6513–6514.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001)
Introduction to Algorithms, The MIT Press.

Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998) J.
Am. Chem. Soc., 120, 6836–6837.

Delaglio, F., Kontaxis, G. and Bax, A. (2000) J. Am. Chem. Soc.,
122, 2142–2143.

Dominguez, C., Boelens, R. and Bonvin, A.M.J.J. (2003) J. Am.
Chem. Soc., 125, 1731–1737.

Engh, R.A. and Huber, R. (1991) Acta Cryst., A47, 392–400.
Fowler, A.C., Tian, F., Al-Hashimi, H.M. and Prestegard, J.H.

(2000) J. Mol. Biol., 304, 447–460.
Gardner, K.H. and Kay, L.E. (1997) J. Am. Chem. Soc., 119, 7599–

7600.
Giesen, A.W., Homans, S.W. and Brown, J.M. (2003) J. Biomol.

NMR 25, 63–71.
Gnu (2002) The gnu general public license, http://

www.gnu.org/licenses/licenses.html
Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997) J. Mol. Biol.,

273, 283–298.

Hansen, M.R., Hanson, P. and Pardi, A. (2000) Meth. Enzymol.,
317, 220–240.

Hus, J.C., Marion, D. and Blackledge, M. (2001) J. Am. Chem. Soc.,
123, 1541–1542.

Kac, M. (1948) Proc. London Math. Soc., 50, 390–408.
Kemple, M.D., D., R.B., Lipkowitz, K.B., Prendergast, F.G. and

Rao, B.D. (1988) J. Am. Chem. Soc., 110, 8275– 8287.
Kolinski, A. and Skolnick, J. (1998) Proteins, 32, 475–494.
Losonczi, J.A., Andrec, M., Fischer, M.W. and Prestegard, J.H.

(1999) J. Magn. Reson., 138, 334–342.
Meiler, J., Blomberg, N., Nilges, M. and Griesinger, C. (2000) J.

Biomol. NMR, 16, 245–252.
Nomura, K. and Kainosho, M. (2002) J. Magn. Reson., 154, 146–

153.
Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 12334–

12341.
Quine, J.R., Brenneman, M. and Cross, T. (1997) Biophys. J., 72,

2342–2348.
Ramirez, B.E. and Bax, A. (1998) J. Am. Chem. Soc., 120, 9106–

9107.
Rienstra, C.M., Tucker-Kellogg, L., Jaroniec, C.P., Hohwy, M.,

Reif, B., McMahon, M.T., Tidor, B., Lozano-Pèrez, T. and
Griffin, R.G. (2002) Proc. Natl. Acad. Sci. USA, 99, 10260–
10265.

Rohl, C.A. and Baker, D. (2002) J. Am. Chem. Soc., 124, 2723–
2729.

Saupe, A. (1968) Angew. Chem., 7, 97–112.
Stryer, L. (1994) Biochemistry, W.H. Freeman and Company.
Tian, F., Valafar, H. and Prestegard, J.H. (2001) J. Am. Chem. Soc.,

123, 11791–11796.
Tjandra, N. and Bax, A. (1997) Science, 278, 1111–1114.
Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H.

(1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.
Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol.,

194, 531–544.
Wang, L., Pang, Y., Holder, T., Brender, J., Kurochkin, A.V. and

Zuiderweg, E.R.P. (2001) Proc. Natl. Acad. Sci. USA, 98, 7684–
7689.

Wang, Y.X., Marquardt, J.L., Wingfield, P., Stahl, S.J., Lee-Huang,
S., Torchia, D. and Bax, A. (1998) J. Am. Chem. Soc., 120, 7385–
7386.

Wedemeyer, W.J., Rohl, C.A. and Scheraga, H.A. (2002) J. Biomol.
NMR, 22, 137–151.

Yue, K. and Dill, K.A. (2000) Protein Sci., 9, 1935–1946.


