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Abstract

Dynamics of biomolecules over various spatial and time scales are essential for bi-

ological functions such as molecular recognition, catalysis and signaling. However,

reconstruction of biomolecular dynamics from experimental observables requires the

determination of a conformational probability distribution. Unfortunately, these dis-

tributions cannot be fully constrained by the limited information from experiments,

making the problem an ill-posed one in the terminology of Hadamard. The ill-posed

nature of the problem comes from the fact that it has no unique solution. Multiple

or even an infinite number of solutions may exist. To avoid the ill-posed nature, the

problem needs to be regularized by making assumptions, which inevitably introduce

biases into the result.

Here, I present two continuous probability density function approaches to solve

an important inverse problem called the RDC trigonometric moment problem. By

focusing on interdomain orientations we reduced the problem to determination of a

distribution on the 3D rotational space from residual dipolar couplings (RDCs). We

derived an analytical equation that relates alignment tensors of adjacent domains,

which serves as the foundation of the two methods. In the first approach, the ill-

posed nature of the problem was avoided by introducing a continuous distribution

model, which enjoys a smoothness assumption. To find the optimal solution for the

distribution, we also designed an efficient branch-and-bound algorithm that exploits

the mathematical structure of the analytical solutions. The algorithm is guaranteed
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to find the distribution that best satisfies the analytical relationship. We observed

good performance of the method when tested under various levels of experimental

noise and when applied to two protein systems. The second approach avoids the

use of any model by employing maximum entropy principles. This ‘model-free’ ap-

proach delivers the least biased result which presents our state of knowledge. In this

approach, the solution is an exponential function of Lagrange multipliers. To deter-

mine the multipliers, a convex objective function is constructed. Consequently, the

maximum entropy solution can be found easily by gradient descent methods. Both

algorithms can be applied to biomolecular RDC data in general, including data from

RNA and DNA molecules.

iv



To my parents.

v



Contents

Abstract iii

List of Tables viii

List of Figures ix

List of Abbreviations and Symbols xi

Acknowledgements xii

1 Introduction 1

1.1 Interdomain motions and residual dipolar couplings (RDCs) . . . . . 1

1.2 Reconstructing interdomain motions from RDCs is an ill-posed inverse
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Previous approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Bingham model and the branch-and-bound algorithm 7

2.1 The information about interdomain motions is summarized in the Q
matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Q matrix can be decomposed into three matrices . . . . . . . . . 12

2.3 A three-step branch and bound algorithm to determine a unimodal
distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Generalization to the case when the reference domain is switched . . 21

3 Results of the branch-and-bound method 29

3.1 Performance of the method with respect to noise . . . . . . . . . . . . 29

3.2 Application to SpA-N . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



3.3 Application to calmodulin . . . . . . . . . . . . . . . . . . . . . . . . 35

4 The maximum entropy method 41

4.1 The reasons to choose the maximum entropy solution . . . . . . . . . 41

4.2 The maximum entropy solution takes the exponential form . . . . . . 43

4.3 The Lagrange multipliers can be solved through a dual problem . . . 46

4.4 The dual problem is a convex optimization problem . . . . . . . . . . 49

4.5 Linear combinations of the functions in the Q̃ matrix are orthonormal
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusions 57

A Numerical integration of the Bingham probability density function 61

B The functions in the Q̃ matrix are orthonormal 63

Bibliography 65

vii



List of Tables

3.1 Axial and rhombic components of N-CaM . . . . . . . . . . . . . . . 37

3.2 Axial and rhombic components of C-CaM . . . . . . . . . . . . . . . 37

3.3 JSD between the four solutions of CaM . . . . . . . . . . . . . . . . . 39

3.4 Similarity between the maximum probability orientation of the four
solutions of CaM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



List of Figures

1.1 Angle θ in the RDC equation . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Domains as rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The forward and the inverse processes . . . . . . . . . . . . . . . . . . 5

2.1 Interdomain orientation and rotation . . . . . . . . . . . . . . . . . . 9

2.2 Motional decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The three operators transforming Saupe tensors . . . . . . . . . . . . 16

2.4 The first step in the branch-and-bound algorithm . . . . . . . . . . . 17

2.5 The illegal regions in the branching step . . . . . . . . . . . . . . . . 20

2.6 The second step in the branch-and-bound algorithm . . . . . . . . . . 21

2.7 The third step in the branch-and-bound algorithm . . . . . . . . . . . 22

2.8 The branch-and-bound method . . . . . . . . . . . . . . . . . . . . . 22

2.9 The relationship between rotations when the reference domain is switched 23

3.1 The performance of the BnB method with respect to noise . . . . . . 31

3.2 Continuous interdomain orientations distributions of SpA-N in the
DoS representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 RDC correlation plots of the two solutions of SpA-N . . . . . . . . . 34

3.4 Comparing calculated interdomain orientational distributions with the
simulated di-domain orientational distribution of SpA-N . . . . . . . 35

3.5 Calmodulin MAP conformers . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Calmodulin N-terminal domain PCS correlation plot . . . . . . . . . 38

ix



3.7 Calmodulin C-terminal domain RDC correlation plot . . . . . . . . . 38

3.8 Comparison of the solutions calculated by the branch-and-bound method
and the MAP method . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 The primal and the dual problem . . . . . . . . . . . . . . . . . . . . 47

x



List of Abbreviations and Symbols

Symbols

L Lagrangian.

H Hessian matrix.

xfy Expectation of function f given a distribution.

DKL Kullback-Leibler divergence

JSD Jensen-Shannon divergence

Abbreviations

BnB Branch-and-bound

CaM Calmodulin

DOF Degree of freedom

DoS Disk-on-Sphere

NMR Nuclear magnetic resonance

PCS Pseudo contact shift

RDC Residual dipolar coupling

SpA-N N terminal domains of Staphylococcal protein A

SVD Singular value decomposition

OLC Orthogonal linear combination

xi



Acknowledgements

The path towards this thesis is a fascinating journey, mixed with joyful ups and

downs. I would like to express my sincere gratitude to my advisor, Dr. Bruce Donald

for his introduction to a mathematically sound formulation of the problem and his

guidance along developing these provable algorithms. I also thank my committee

members, Dr. Terrence Oas and Dr. Mauro Maggioni for their guidance and support

over the years.

I’m very grateful that I didn’t work alone on the path. I couldn’t make this

far without the help from the Donald lab members. I would like to thank Dr.

Mark Hallen, Dr. Swati Jain, Dr. Pablo Gainza, Hunter Nisonoff and all other

members for their helpful and stimulating discussions. I especially wish to thank

Dr. Jeffrey Martin, Dr. Anthony Yan and François Thélot. Jeff introduced me to
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really enjoyed working with François Thélot on the pseudo-contact shift problem and

on the maximum entropy method. Besides the Donald lab, I thank my friend, Dr.

Tingran Gao and Dr. Shiwen Zhao for their helpful discussions and mathematical

insights.

Finally, I would like to thank my supportive friends and family. I wish to give

my best regards to my friends Weiwei Li, Hui Kang, Xiao Yan, Dr. Yu Jiang, Ruo

xii



He, Dr. Shiwen Zhao, Rujie Yin and Dr. Tingran Gao, who share their life moments

with me.

xiii



1

Introduction

1.1 Interdomain motions and residual dipolar couplings (RDCs)

Dynamics of biological macromolecules are essential for biological functions such as

molecular recognition, catalysis and signaling. Biomolecular dynamics occur over

various spatial and time scales and include motional modes such as local bond vi-

bration, sidechain rearrangement, interdomain motion and global tumbling. Among

them, interdomain motions are important for molecular recognition, as demonstrated

in multiple studies [1, 2, 3]. Protein and RNA molecules can rearrange interdomain

orientations upon binding, thereby enabling adaptive conformational changes that

are accompanied by contributions to the free energy, internal energy and entropy of

binding. In addition, different binding geometries were observed in the presence of

different binding partners [2]. The observations suggest the interdomain motions of

biopolymers direct the transitions between different conformations, contributing to

their functional plasticity.

Residual dipolar couplings were first introduced to biomolecular systems as struc-

tural constraints. A RDC between two spins is a function of angle θ as in Eq. (1.1),
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Figure 1.1: The angle θ between the bond vector v and the direction of the magnetic
field B. I and S are two spins forming a bond vector.

which is the angle between the bond vector from one spin to the other and the di-

rection of the magnetic field in Fig. 1.1. Compared to other NMR local constraints,

RDCs restraint the direction of bond vector and serve as global constraints. Be-

cause the direction of bond vector was determined independently, its error does not

accumulate over the distance. As global constraints, RDCs provide complementary

information to constrain the overall fold of biomolecular structure, especially the

relative orientation between secondary structures [4]. In addition to structural in-

formation, RDCs also contain dynamic information. Because the bond vector is

rotating when the molecule is in solution, there is a distribution of angles θ instead

of one unique angle. RDCs are scalar averages over the angle distributions and thus

have a rich information content of biomolecular dynamics. The dynamics observed

by RDCs cover a wide range of timescales, ranging from picosecond to millisecond.

The combined structural and dynamics information over the wide range of timescales

makes RDCs an exceptional powerful technique to probe the spatial nature of con-

formational fluctuations of biomolecules.

D
IS
� �µ0γI

γ
S
~

4π2xr3
IS
yx

3 cos2 θ � 1

2
y. (1.1)

Here, we focus on interdomain motions and study systems with relative little
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Figure 1.2: The domains are considered as rigid bodies by ignoring intradomain
motions. Six degrees of freedom (DOFs), three translational DOFs and three rota-
tional DOFs exist between the two domains.

intradomain dynamics. As a result, the domains are treated as rigid bodies and

the interdomain linker are considered flexible as in Fig. 1.2. In order words, we

only consider six degrees of freedom (DOFs), three translational DOFs and three

rotational DOFs between the domains. Under the assumption, the structure of

the two domains are static. A rotational motion tensor can be calculated for each

domain given the static structures of the two domains. The tensor, also known as

Saupe tensor, contains the structural dynamic information in RDCs. So for the

interdomain motion problem, all the information we have are in the Saupe tensors.

Intuitively, the Saupe tensor of domain I informs on the global tumbling of the whole

molecule and the Saupe tensor of domain II depends on both global tumbling and

interdomain motions. If we can separate the global tumbling component from the

second Saupe tensor, we extract the dynamic information of interdomain motions.

3



1.2 Reconstructing interdomain motions from RDCs is an ill-posed
inverse problem

Although RDCs deliver the desired information, using the piece of information to

reconstruct interdomain motions poses a big computational challenge. Because the

observation of RDCs from experiments is a forward process, the problem of recon-

struction is an inverse problem (Fig. 1.3). A simulation of the forward process is

straight forward, because the forward simulation is well-posed. However, the in-

verse problem is ill-posed due to the lack of information. As noted previously, RDCs

contain rich information about interdomain motions. Obtaining independent RDC

datasets can further increase the information content [5]. But RDCs and the derived

Saupe tensors only contain average information. In the two approaches discussed

in the following chapters, the interdomain motions are represented as a probability

distribution. The average information in RDCs are moments of the distributions. As

most moment problems [6], reconstructing interdomain motions from RDCs is also

an ill-posed problem.

Following the definition of Hadamard [7, 8], the solution of an ill-posed problem

may not be unique, or the solution does not exist, or the solution does not depend

continuously on the data. Any violation of the solution existence, uniqueness or

continuity makes the problem an ill-posed one. In our case, the data are collected

through physical experiments, solution existence and continuity are not much of a

concern. However, multiple or an infinite number of solutions can satisfy the data,

so the solution is not unique. Because a fraction of information is lost in the forward

process, a recovery of the ground truth is impossible. However, approximate and sta-

ble solutions for ill-posed problems can be determined with the help of regularization

methods. Regularizations generally select one solution from the set of all possible so-

lutions. The selection is based on prior information or reasonable assumptions. The

4



Figure 1.3: The forward process is to convert the ground truth distribution to
RDCs either by experiments or simulations. The inverse process is to reconstruct
the distribution from RDCs.

smoothness assumption is a reasonable assumption for many problems. In our case,

because a biomolecular domain rotate through the space continuously, the probabil-

ity distribution should also be continuous. In addition, the probability distribution

is dictated by the molecule’s surrounding force field. Given no evidence of abrupt

change in the force field, the distribution should be smooth. As discussed in the

following chapters, the smoothness assumption is used to regularize the problem.

1.3 Previous approaches

Several methods have been developed to solve the ill-posed problem, including max-

imum allowed probability (MAP) [1], sample-and-select (SAS) [9] and sparse ensem-

ble selection (SES) [3]. All three methods use a discrete finite ensemble to describe
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interdomain motions. They select an ensemble of discrete conformers from a pre-

configured conformational pool. When conformations in the pool are generated by

molecular dynamics simulation or selected by an energy function, the conformations

are restricted to regions where the empirical energy is favorable. Because of discrete

nature and the use of energy function, all the methods suffer from three disadvan-

tages. First, although the energy function offers regularization, it also introduces

empirical assumptions into the result. Unfortunately, the energy function does not

have a good ability to predict salient features of unfolded states or unstructured re-

gions, raising doubts concerning the associated assumptions [10]. Second, for large

amplitude interdomain motions, the number of discrete conformers required to rep-

resent the broad conformational distribution is enormous, which increases the risk

of over-fitting. Last but not least, a discrete ensemble assigns certain probabilities

to the conformations in the ensemble and assigns zero probability to the rest of the

conformational space. Although the ensemble description captures several character-

istics of biomolecular motions, the void of probability between structures is physically

unreasonable.

The use of discrete conformers also weakens the maximum entropy claim. In

order to compute the solution in a realistic amount of time and avoid over-fitting,

previous maximum entropy methods restrict the number of discrete conformers [11,

12]. Although the derived solution by those methods has the maximum entropy

given the number of conformers, the solution is certainly not the maximum entropy

solution among all solutions satisfying the constraints. On the other hand, the

maximum entropy solution is supposed to be the least biased solution. By selecting

certain number of conformers from a preconfigured conformational pool, additional

assumptions are made and biases are introduced.
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2

The Bingham model and the branch-and-bound
algorithm

2.1 The information about interdomain motions is summarized in the
Q matrix

Besides Eq. (1.1), there is an alternative expression for RDC. The averaging in RDCs

can be summarized by using a tensor, which is a 3 � 3 symmetric matrix with zero

trace. The matrix is formally named as a Saupe tensor. Thus, the RDC equation

can be formulated in the following way [13]:

D � K

2
vTSv. (2.1)

In Eq. (2.1), K is the dipolar coupling constant, v is a normalized unit bond vector

and S is a Saupe tensor. The dipolar coupling constant K is calculated as:

K � �µ0γI
γ

S
~

4π2r3
IS

(2.2)
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The Saupe tensor is a 3 � 3 traceless symmetric matrix:

S �
�
� Sxx Sxy Sxz
Sxy Syy Syz
Sxz Syz Szz

�
� , (2.3)

which has 5 DOFs: axiality, rhombicity and orientation of the principle axes in a

molecular frame. Saupe tensors can be calculated from RDCs by an SVD method [14].

The interdomain motions can be described by a probability distribution. If each

interdomain orientation can be assigned a probability, the interdomain dynamics are

completely quantified. Thus, we can convert the problem of determining interdomain

motions to determining a probability distribution. Furthermore, each interdomain

orientation can be represented as a rotation (Fig. 2.1). In the double domain sce-

nario, we have Domain I and Domain II. Suppose we attach a set of axes to each

domain. Then an interdomain orientation can be represented by the orientational

difference between the two sets of axes, in other words, a rotation. The rotation

can be parameterized either by a rotation matrix or a quaternion. Consequently, we

reduce the problem to determining a probability distribution over the rotation space

SOp3q.
Following the above framework, the two Saupe tensors determined from their

own molecular frame can be related by a rotation if the two domains have a fixed

orientation:

D � K

2
v

I

TS
I
v

I
� K

2
v

II

TRTS
I
Rv

II
(2.4)

D � K

2
v

II

TS
II
v

II
(2.5)

where v
I

is a normalized unit bond vector in the molecular frame of the first domain

and v
II

is a normalized bond vector in the molecular frame of the second domain.

R P SOp3q and can be parameterized as a 3�3 rotation matrix, which has orthogonal
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Figure 2.1: The interdomain orientation of two domains can be represented by a
rotation.

rows and columns, and a determinant of �1:

R �
�
� x1 y1 z1

x2 y2 z2

x3 y3 z3

�
� . (2.6)

Hence,

S
II
� RTS

I
R. (2.7)

When there are interdomain motions, the second Saupe tensor S
II

is an average over

all possible orientations:

S
II
� xRTS

I
Ry. (2.8)

In the current experimental setting, Domain I is aligned directly and Domain II

is aligned indirectly through the linker. So the interdomain motions do not influence

the alignment of the first domain. In other words, the rotational motion of Domain

I is decoupled from the interdomain motions (Fig. 2.2). Because of the motional

9



Figure 2.2: Motional decoupling is achieved when Domain I is experimentally set
as a reference.

decoupling, S
I

remains a constant. Thus, we can take S
I

out of the average. In order

to do so, first we rewrite the rotation matrix R in the following form:

R � � x y z
�
, (2.9)

where x � rx1 , x2 , x3sT , y � ry1 , y2 , y3sT and z � rz1 , z2 , z3sT . As a result, Eq. (2.8)

becomes:

S
II
� x
�
� xT

yT

zT

�
�S

I

�
x y z

�y. (2.10)

From Eq. (2.10), we have:

SII,ab � xaTS
I
by, (2.11)

where pa, aq P tpx,xq, py,yq, pz, zqu and pb,bq P tpx,xq, py,yq, pz, zqu. This subscript

convention allows us to conveniently define each element of the Saupe tensor S
II

. It

should be noted that on the left hand side, SII,ab is an element in S
II

and on the right

10



hand side, S
I

is a 3 � 3 matrix. The right hand side of Eq. (2.11) can be written as

a scalar product of tensors [13]:

SII,ab � Tab d S
I
, (2.12)

where d is the Frobenius inner product, Tab is a 3 � 3 matrix in the following form:

Tab � xabT y �
�
� xa1b1y xa1b2y xa1b3y

xa2b1y xa2b2y xa2b3y
xa3b1y xa3b2y xa3b3y

�
� . (2.13)

Again, pa, aq P tpx,xq, py,yq, pz, zqu and pb,bq P tpx,xq, py,yq, pz, zqu. By writing

out the elements of Saupe tensor S
I
, we have:

SII,ab � xa1b1ySI,xx � xa2b2ySI,yy � xa3b3ySI,zz � xa1b2 � a2b1ySI,xy � xa1b3 � a3b1ySI,xz � xa2b3 � a3b2ySI,yz.

(2.14)

Because Saupe tensor is traceless, we have Sxx � Syy � Szz � 0 and:

SII,ab � xa1b1 � a3b3ySI,xx � xa2b2 � a3b3ySI,yy � xa1b2 � a2b1ySI,xy � xa1b3 � a3b1ySI,xz � xa2b3 � a3b2ySI,yz,

(2.15)

where a P tx, y, zu and b P tx, y, zu. If we summarize the above result in Eq. (2.15)

by vectorizing the Saupe tensors, we have:

s
II
� IE

R�P pRq
rQpRqs � s

I
(2.16)

where

QpRq �

�
�����

x2
1
� x2

3
x2

2
� x2

3
2x1x2 2x1x3 2x2x3

y2
1
� y2

3
y2

2
� y2

3
2y1y2 2y1y3 2y2y3

x1y1 � x3y3 x2y2 � x3y3 x1y2 � x2y1 x1y3 � x3y1 x2y3 � x3y2

x1z1 � x3z3 x2z2 � x3z3 x1z2 � x2z1 x1z3 � x3z1 x2z3 � x3z2

y1z1 � y3z3 y2z2 � y3z3 y1z2 � y2z1 y1z3 � y3z1 y2z3 � y3z2

�
�����

(2.17)
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and

IE
R�P pRq

rQpRqs �

�
�����

xx2
1
� x2

3
y xx2

2
� x2

3
y x2x1x2y x2x1x3y x2x2x3y

xy2
1
� y2

3
y xy2

2
� y2

3
y x2y1y2y x2y1y3y x2y2y3y

xx1y1 � x3y3y xx2y2 � x3y3y xx1y2 � x2y1y xx1y3 � x3y1y xx2y3 � x3y2y
xx1z1 � x3z3y xx2z2 � x3z3y xx1z2 � x2z1y xx1z3 � x3z1y xx2z3 � x3z2y
xy1z1 � y3z3y xy2z2 � y3z3y xy1z2 � y2z1y xy1z3 � y3z1y xy2z3 � y3z2y

�
����� .

(2.18)

In Eqs. (2.16-2.18), s
I

and s
II

are vectorized Saupe tensors with 5 elements in the

format s � rSxx, Syy, Sxy, Sxz, SyzsT . R P SOp3q is parameterized as in Eq. (2.6). It

is important to see that the scalars xi, yi and zi, i � p1, 2, 3q in Eqs. (2.17-2.18) are

precisely the nine elements of the rotation matrix R given in Eq. (2.6). The Q matrix

is a function of the interdomain orientation R, shown in Eq. (2.17). IE
R�P pRq

rQpRqs is

the expectation of the Q matrix over the rotation space SOp3q. P pRq is a distribution

of R over the rotation space SOp3q. Define matrix G � IE
R�P pRq

rQpRqs. Then each

element in the matrix G can be calculated by an integration:

Gij �
»
SOp3q

QijP pRqdR. (2.19)

In Eq. (2.16), s
I

and s
II

are directly derived from experimental observables. With

one or multiple alignments, we can obtain the full Q matrix or linear combinations of

its elements. Because Eq. (2.16) expresses a relationship between the experimental

observables s
I

and s
II
, and the underlying interdomain orientational distribution, the

full Q matrix or linear combinations of its elements contain information about the

orientational distribution, and the information can serve as geometric constraints.

2.2 The Q matrix can be decomposed into three matrices

The family of Bingham distributions [15] are widely used to describe circular distri-

butions on the 2D sphere S2 and 3D rotational space SOp3q [16]. Previous studies

demonstrated the Bingham model’s ability to represent salient features of a broad

12



spectrum of orientational distributions [16]. Consequently, we model the interdo-

main orientational distribution as the Bingham distribution on SOp3q, which takes

the following form [15, 16]:

P pq̃ ; Xq � c�1pXq exppq̃TXq̃q. (2.20)

In Eq. (2.20), c�1pXq is the normalization factor. P pq̃ ; Xq is the probability of q̃

given X. q P SOp3q is a rotation and q̃ is the 4D unit quaternion representation of q.

X is a symmetric 4 � 4 matrix with a constant trace and thus 9 degrees of freedom

(DOFs). The meaning of the 9 DOFs becomes more clear if we decompose X in the

following way:

X �MTΛM. (2.21)

Here, M is a rotation matrix belonging to the group SOp4q and Λ is a diagonal matrix

with a constant trace specifying the variances along the four principle directions. M

contains 6 DOFs and Λ contains 3 DOFs. The rotation matrix M P SOp4q can be

further decomposed into a left isoclinic rotation ML and a right isoclinic rotation

MR:

M �MLMR. (2.22)

The left isoclinic rotation ML corresponds to a left quaternion rotation q
L
, the right

isoclinic rotation MR corresponds to a right quaternion rotation q
R

. Consequently,

the 9 DOFs in the Bingham distribution can be separated into three matrices, Λ,

ML and MR.

When the Bingham distribution is used to model an interdomain distribution,

the Q matrix can be decomposed into three matrices. The decomposition of the

Q matrix is proved by using the matrix von Mises Fisher (vMF) distribution. The

3 � 3 matrix vMF distribution is a distribution of 3 � 3 orthogonal matrices with

determinants of �1 on SOp3q [17]. The probability density function of the vMF

13



distribution takes the following form:

P pR ; F q � c�1pF q exppTrpFRqq (2.23)

In Eq. (2.23), c�1pF q is a normalization factor. P pR ; F q is the probability of R given

F . R P SOp3q is a rotation matrix and F is a 3� 3 matrix containing 9 parameters.

F can be decomposed in the following way:

F � ΘDΓ, (2.24)

where Θ P SOp3q and Γ P SOp3q are two rotation matrices. D � Diagpφ1, φ2, φ3q is a

3�3 diagonal matrix with 3 concentration parameters. The matrix vMF distribution

is equivalent to the Bingham distribution [17] with the following relationships:

Λ �

�
���
φ1 � φ2 � φ3 0 0 0

0 φ1 � φ2 � φ3 0 0
0 0 φ2 � φ1 � φ3 0
0 0 0 φ3 � φ1 � φ2

�
��� (2.25)

Γ � RotMpq̃
L
q (2.26)

Θ � RotMpq̃
R
q, (2.27)

where RotM is a function mapping from a quaternion q̃ to its corresponding rotation

matrix. If we construct a new matrix Y � ΓRΘ, we can rewrite Eq. (2.16) as

s
II
� IE

Y�P pY ; Dq
rQpΓTYΘT qs � s

I
, (2.28)

where Y P SOp3q and QpRq is a function converting the rotation matrix R P SOp3q
into the Q matrix form as shown in Eq. (2.17). We observe the following property

of QpRq when the rotation matrix R is a product of two rotations R1 and R2:

SII � RTSIR � RT
2R

T
1 SIR1R2. (2.29)

Correspondingly, we have:

s
II
� QpRq � s

I
� QpR2q �QpR1q � sI

(2.30)
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and

QpRq � QpR2q �QpR1q. (2.31)

Using the above property in Eq. (2.31), we could write Eq. (2.28) in the following

form:

s
II
� QpΘT q � IE

Y�P pY ; Dq
rQpY qs �QpΓT q � s

I
, (2.32)

As a result, the following is true for the Bingham distribution:

s
II
� Qpq̃�1

R
q � IE

q̃
Y
�P pq̃

Y
; Λq
rQpq̃

Y
qs �Qpq̃�1

L
q � s

I
. (2.33)

In Eq. (2.33), q̃
R

and q̃
L

are two quaternions corresponding to rotations specified by

rotation matrices Θ P SOp3q and Γ P SOp3q. The probability density function used

to calculate the expectation IE
q̃
Y
�P pq̃

Y
; Λq
rQpq̃

Y
qs is

P pq̃
Y

; Λq � c�1pΛq exppq̃T
Y

Λq̃
Y
q (2.34)

where

q
Y
� q

L
qq

R
. (2.35)

In Eq. (2.33), Qpq̃q is a function converting the quaternion q̃ into the Q matrix form.

Essentially, Qpq̃q � QpRotMpq̃qq.
In addition, the distribution P pq̃

Y
; Λq is symmetric with respect to xyz, xyw,

xzw and yzw hyperplanes in the 4D space. Let q̃
Y
� pq1 , q2 , q3 , q4q. Because of the 4

hyperplane symmetries, most expectations of quartic terms are zero. There are only

ten non-zero expectations of quartic terms, xq4
i
y and xq2

i
q2
j
y, where i, j � 1, 2, 3, 4.

The expectation matrix of Qpq̃
Y
q contains a large number of zero entries. If we define

a
ij
� 1

3
xq4

i
� q4

j
� 6q2

i
q2
j
y (2.36)

Then
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Figure 2.3: The three matrices can be viewed as operators transforming Saupe
tensors.

IE
q̃
Y
�P pq̃

Y
; Λq
rQpq̃

Y
qs �

�
�����

�a12 � a34 � 3a13 � 3a24 � a14 � a23 2a13 � 2a24 � 2a14 � 2a23 0 0 0
2a12 � 2a34 � 2a14 � 2a23 3a12 � 3a34 � a13 � a24 � a14 � a23 0 0 0

0 0 3a14 � 3a23 0 0
0 0 0 3a13 � 3a24 0
0 0 0 0 3a12 � 3a34

�
�����

(2.37)

Eq. (2.36) and Eq. (2.37) are evaluated by efficiently approximating the matrix

hypergeometric function [18] (Appendix A).

2.3 A three-step branch and bound algorithm to determine a uni-
modal distribution

Following Eq. (2.33), Q matrix can be decomposed into three matrices. Each of the

matrices has three DOFs, living in the spaces S3, R3 and S3, respectively. In order

to distinguish the two rotation spaces, the space corresponding to a left rotation

is notated as S3
L

and the one corresponding to a right rotation is notated as S3
R

.

When the matrices are viewed as operators, the Saupe tensors get rotated but the

magnitude of principle components of a Saupe tensor remain the same under rotation

operations (Fig. 2.3). Consequently, the first left rotation and the second averaging

operation transform the principle components of s
I

into those of s
II
. Based on this,

we focus on R3�S3
L

in the first two steps of search, thus reducing the dimensionality,

and find a subspace in R3 � S3
L

which transforms the largest principle component

DI,a of s
I

into DII,a of s
II
.
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Figure 2.4: The first step in the branch-and-bound algorithm. For illustration, the
R3 space is branched into 4 regions. The upper and lower bound for each region are
calculated by sampling the right-side S3 space. The red arrow on the right represents
the magnitude of the largest principle component of the first Saupe tensor S

I
. The

red arrow on the left represents the magnitude of the largest principle component of
the second Saupe tensor S

II
. Regions (green) covering the target magnitude is saved

for the next round of branch-and-bound. Other regions (red) are pruned.

Step 1. The first step is to prune the R3 space. Before pruning, bounds of the

largest principle component Da on a region of R3 are built. If DII,a does not fall into

the range between the bounds, the region can not contain the solution to Eq. (2.33)

and will be consequently pruned (Fig. 2.4). Detailed description of building the

bounds is shown in the following.

In Eq. (2.20), M is a rotation matrix in SOp4q and Λ � Diagpλ1, λ2, λ3, λ4q
is a diagonal matrix with four concentration parameters. Without ordering the

concentration parameters, there are multiple pairs of Λ and M corresponding to

the same distribution. To resolve the ambiguity, the concentration parameters are

defined in the order of λ1 ¡ λ4 ¡ λ3 ¡ λ2. λ1 � λ2 � λ3 � λ4 � 0 is also enforced

because for any scalar a, Λ and Λ � aI correspond to the same distribution. With

17



these two conventions, most of the ambiguity has been resolved. Although the column

vector in M can flip signs, the remaining sign ambiguity hardly raises a concern.

Because the right rotation does not change the magnitude of principle compo-

nents, the resulting Da is a function of only Λ and q�1
L

. For each q�1
L

, bounds of Da

can be calculated easily based on the range of variables in Λ. Intuitively, Λ defines

the averaging operation on a Saupe tensor. When Λ corresponds to a broad distri-

bution and the averaging operation is intensive, Da is small and vice versa. So Da

reaches its maximum and minimum when there is the least and the most averaging,

respectively. Suppose the range of variables in Λ is as:

λ2 ¤ λ2 ¤ λ2 (2.38)

λ3 ¤ λ3 ¤ λ3 (2.39)

λ4 ¤ λ4 ¤ λ4. (2.40)

In Eqs. (2.38-2.40), an underlined symbol represents the parameter’s lower limit

and an overlined one indicates its upper limit. Following the definition, it can be

proved that the averaging operation is least intensive when pλ2, λ3, λ4q � pλ2, λ3, λ4q
and it is most intensive when pλ2, λ3, λ4q � pλ2, λ3, λ4q. Suppose we have a Λ �
Diagpλ1, λ2, λ3, λ4q, if λ2 is increased by ∆, then by definition λ1� λ2� λ3� λ4 � 0,

λ1 is decreased by ∆. The resulted Λ is Diagpλ1 � ∆, λ2 � ∆, λ3, λ4q. In addition,

because λ1 is larger than λ2, the scaling constant c�1pΛq increases. If we rescale the

increase into Λ, the resulted Λ is Diagpλ1�∆�∆1, λ2�∆�∆2, λ3�∆3, λ4�∆4q. If

λ2 increases, the absolute value of λ2 component increases, so does that of λ3 and λ4,

and the averaging is more intensive. The reverse is also true, when λ2 decreases, the

averaging is less intensive. The same is true for λ3 and λ4. Consequently, for each

q�1
L

, Da takes its maximum when pλ2, λ3, λ4q � pλ2, λ3, λ4q and it takes its minimum

when pλ2, λ3, λ4q � pλ2, λ3, λ4q.To fully solve the problem, we also need to know
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which q�1
L

P S3 makes Da reach its maximum and minimum. A systematic sampling

on one half sphere of S3 with 4608 samples was used.

In order to strictly follow the definition λ1 ¡ λ4 ¡ λ3 ¡ λ2, the branched region

in the R3 space follows the rules below.

λ2 ¤ λ3 (2.41)

λ3 ¤ λ4 (2.42)

λ4 ¤ λ1. (2.43)

Because the above rules need to be followed, some regions violating the rules can not

be bounded. We name those regions as illegal regions. However, as the branching

goes to a deeper level, the total volume of the illegal regions gets smaller(Fig. 2.5).

Empirically, the volume of illegal regions can be reduced below a desired value after

6 levels of branching. Consequently, the existence of illegal regions does not break

down the provable guarantee nor decrease the accuracy, although it reduces the

pruning efficiency to some extent. The 6 levels of branching algorithm is equivalent

to a systematic sampling on R3 with 262144 samples.

Step 2. The 2nd step is very similar to the first step, building bounds over

a region in R3 � S3
L

where the bounds are for the largest principle component Da

(Fig. 2.6). The spherical space S3 is divided into 6912 regions. For a given region in

R3�S3
L
, the maximum and minimum are reached when pλ2, λ3, λ4q � pλ2, λ3, λ4q and

when pλ2, λ3, λ4q � pλ2, λ3, λ4q. For a given region in S3, the quaternions, qmax
L

and

qmin
L

, that give maximum and minimum Da can not be determined analytically, so a

systematic sampling with 8 samples on the region is used. Because each one of the

6912 subregions on S3 is small, the systematic sampling with 8 samples is sufficient.

After bounds are calculated, regions that do not contain DII,a will be pruned.

At least two independent alignments are necessary to determine a unimodal Bing-

ham distribution. In the first and second pruning steps described in the previous
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Figure 2.5: Branching the real space decrease the volume of illegal regions. The
figure shows an example of the branching. x axis is λ3, y axis is λ4, in this example,
λ2 � 0 and λ1 � �λ4 � λ3. (a) the shaded area is allowed by definition λ1 ¡ λ4 ¡
λ3 ¡ λ2. (b) the first branching in the allowed area, illegal regions are labeled red.
(c) the second branching in the allowed area, area of the illegal regions is smaller.

paragraphs, the magnitudes of principle components of Saupe tensors serve as two

constraints. They are applied to the parameter space in R3�S3
L
, reducing the number

of DOFs from six to four.

Step 3. The third step is a systematic sampling on the remaining four dimen-

sional space. For each sampled point, the resulting Saupe tensors after the left

rotation operation and the averaging operation are calculated and rotation matrices

of the Saupe tensors are calculated. Suppose the calculated rotation matrices are

Rq,1 and Rq,2 for the two alignments and suppose the rotation matrices for the Saupe

tensors of the second domain are RII,1 and RII,2. Hence, the right rotation matrices

RR,1 and RR,2 can be calculated using the following equation:

RR � Rq �RT
II, (2.44)

where RR � RotMpq̃
R
q Two right rotation matrices can be calculated, one for each

alignment. If the two rotation matrices agree with each other within a numerical

tolerance, the sampled point in R3 � S3
L

along with the calculated rotation in S3
R

is stored (Fig. 2.7). The stored solutions are sorted by the objective function in
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Figure 2.6: The second step in the branch-and-bound algorithm. For illustration,
the S3 space (on the right) is branched into 8 regions. The upper and lower bound
for each region are calculated for each pair of points on the R3 space and the S3

space . The red arrow on the right represents the magnitude of the largest principle
component of the first Saupe tensor S

I
. The red arrow on the left represents the

magnitude of the largest principle component of the second Saupe tensor S
II
. Regions

(green) covering the target magnitude is saved for the next round of branch-and-
bound. Other regions (red) are pruned.

Eq. (2.45) to find the best Bingham distribution satisfying the data:

fpxq �
¸
i

pIE
R�P pR ; Xq

rQpRqs � s
I,i
� s

II,i
q2. (2.45)

The whole method is summarized in Fig. 2.8.

2.4 Generalization to the case when the reference domain is switched

In the previous discussions, we assume the reference domain is always Domain I in

different alignments. However, experimental settings could be different from case to

case. For example, in the TAR RDC datasets, Domain I is the reference in the first

alignment while Domain II is the reference in the second alignment. In this section,
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Figure 2.7: The third step in the branch-and-bound algorithm. The point on the
S3 space of q̃

R
can be directly calculated.

Figure 2.8: A flow chart of the experimental and computational steps used to
calculate the continuous distribution of interdomain orientations. The loss function
is the objective function in Eq. (2.45)
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Figure 2.9: The interdomain conformation of A and B are the same. A. the
reference domain is the top red domain and the rotation from the reference domain
to the other domain is q. B. the reference domain is the bottom blue domain and
the rotation from the reference domain to the other domain is q�1.

I present a generalization of the method which can deal with the above experimental

settings. Although parameterization of the interdomain orientation distributions

depends on the choice of reference domain, a simple relationship between the two

sets of parameters can be derived, which enables the branch-and-bound algorithm

to work for this dataset as well.

Because the interdomain motions are the same in the two alignments, the prob-

abilities corresponding to one particular interdomain orientation must equal each

other. Assuming an interdomain orientation is represented by a rotation R in the

first alignment, the orientation is represented by its inverse rotation RT in the second

alignment, because of the change of reference domain, as shown in Fig. 2.9. Conse-

quently, probability P
I
pRq in the first distribution equals to P

II
pR�1q in the second

distribution for any given rotation R. Because rotations can also be represented by
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quaternions, we have the following equation:

P
I
pq̃q � P

II
pq̃�1q. (2.46)

The above equation generally holds without any assumption. When Bingham distri-

bution is introduced to model the interdomain motions [15, 16], we have:

P
I
pq̃q � c�1pXIq exppq̃TXI q̃q, (2.47)

P
II
pq̃�1q � c�1pXIIq expppq̃�1qTXII q̃

�1q. (2.48)

Based on Eq. (2.46), we know the second distribution is an axially inverted image of

the first one. So the scaling factors c�1pXIq and c�1pXIIq are the same. Consequently,

we have:

q̃TXI q̃ � pq̃�1qTXII q̃
�1. (2.49)

From Eq. (2.21), X can be decomposed as MTΛM , we have:

q̃TMT
I ΛIMI q̃ � pq̃�1qTMT

IIΛIIMII q̃
�1. (2.50)

If we define q̃ as q̃ � rq1, q2, q3, q4sT , then q̃�1 � rq1,�q2,�q3,�q4sT . If we further

define M as M � rm1,m2,m3,m4s where each mi is a column vector, the above

equation can be written as:

q̃TMT
I ΛIMI q̃ � q̃T rm

II,1
,�m

II,2
,�m

II,3
,�m

II,4
sTΛIIrmII,1

,�m
II,2
,�m

II,3
,�m

II,4
sq̃.

(2.51)

Consequently, we have:

MT
I ΛIMI � rm

II,1
,�m

II,2
,�m

II,3
,�m

II,4
sTΛIIrmII,1

,�m
II,2
,�m

II,3
,�m

II,4
s.

(2.52)

From the above equation, it seems that we could derive relationships between

ΛI and ΛII and between MI and MII . Indeed, we could get the relationships after

straighting out a minor issue. In Eq. (2.52), after changing the signs of three row
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vectors in rotation matrix MII , the determinant becomes -1 and the resulted matrix

is no longer a rotation matrix. In order to change the determinant back to 1, we

could change the signs of the last three column vectors. The resulted matrix is

M 1
II �

�
���

m
II,11

�m
II,12

�m
II,13

�m
II,14

�m
II,21

m
II,22

m
II,23

m
II,24

�m
II,31

m
II,32

m
II,33

m
II,34

�m
II,41

m
II,42

m
II,43

m
II,44

�
��� . (2.53)

In addition, the following equation still holds:

MIΛIM
T
I �M 1

IIΛIIpM 1
IIqT . (2.54)

From the above equation, we can derive some simple relationships: ΛII � ΛI and

M 1
II �MI . Consequently, we have:

MII �

�
���
m

II,11
m

II,12
m

II,13
m

II,14

m
II,21

m
II,22

m
II,23

m
II,24

m
II,31

m
II,32

m
II,33

m
II,34

m
II,41

m
II,42

m
II,43

m
II,44

�
��� �

�
���

m
I,11

�m
I,12

�m
I,13

�m
I,14

�m
I,21

m
I,22

m
I,23

m
I,24

�m
I,31

m
I,32

m
I,33

m
I,34

�m
I,41

m
I,42

m
I,43

m
I,44

�
��� .

(2.55)

As discussed in section 2.2, matrixM in the Bingham distribution can be decomposed

as a product of one left rotation and one right rotation [19]. Both left and right

rotations are isoclinic rotations in 4D space and can be represented as functions of

a quaternion. The decomposition of MI is shown in the following equation:

MI �MLpq̃I,L
qMRpq̃I,R

q, (2.56)

where MLpq̃q and MRpq̃q are two 4 � 4 matrix generated by the unit quaternion q̃.

If we define q̃ � rq1 , q2 , q3 , q4sT , we have:

MLpq̃q �

�
���
q1 �q2 �q3 �q4

q2 q1 �q4 q3

q3 q4 q1 �q2

q4 �q3 q2 q1

�
��� , (2.57)
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MLpq̃q �

�
���
q1 �q2 �q3 �q4

q2 q1 q4 �q3

q3 �q4 q1 q2

q4 q3 �q2 q1

�
��� . (2.58)

Assuming q̃
I,L

� ra, b, c, dsT and q̃
I,R

� rp, q, r, ssT , then according to Mebius [19],

we have:

MI �

�
���
m

I,11
m

I,12
m

I,13
m

I,14

m
I,21

m
I,22

m
I,23

m
I,24

m
I,31

m
I,32

m
I,33

m
I,34

m
I,41

m
I,42

m
I,43

m
I,44

�
���

�

�
���
ap� bq � cr � ds �aq � bp� cs� dr �ar � bs� cp� dq �as� br � cq � dp
aq � bp� cs� dr ap� bq � cr � ds as� br � cq � dp �ar � bs� cp� dq
ar � bs� cp� dq �as� br � cq � dp ap� bq � cr � ds aq � bp� cs� dr
as� br � cq � dp ar � bs� cp� dq �aq � bq � cs� dr ap� bq � cr � ds

�
��� ,

(2.59)

MII �

�
���

m
I,11

�m
I,12

�m
I,13

�m
I,14

�m
I,21

m
I,22

m
I,23

m
I,24

�m
I,31

m
I,32

m
I,33

m
I,34

�m
I,41

m
I,42

m
I,43

m
I,44

�
���

�

�
���

ap� bq � cr � ds aq � bp� cs� dr ar � bs� cp� dq as� br � cq � dp
�aq � bp� cs� dr ap� bq � cr � ds as� br � cq � dp �ar � bs� cp� dq
�ar � bs� cp� dq �as� br � cq � dp ap� bq � cr � ds aq � bp� cs� dr
�as� br � cq � dp ar � bs� cp� dq �aq � bq � cs� dr ap� bq � cr � ds

�
��� .

(2.60)

A general method to decompose 4D rotation matrix M is to calculate its associate

matrix A as shown in the following equation [19]:

A � 1
4

�
���
m11 �m22 �m33 �m44 m21 �m12 �m43 �m34 m31 �m42 �m13 �m24 m41 �m32 �m23 �m14

m21 �m12 �m43 �m34 �m11 �m22 �m33 �m44 m41 �m32 �m23 �m14 �m31 �m42 �m13 �m24

m31 �m42 �m13 �m24 �m41 �m32 �m23 �m14 �m11 �m22 �m33 �m44 m21 �m12 �m43 �m34

m41 �m32 �m23 �m14 m31 �m42 �m13 �m24 �m21 �m12 �m43 �m34 �m11 �m22 �m33 �m44

�
��� .

(2.61)

We know MI is constructed from two rotations and we know the decomposition. As

an example, we could use Eq. (2.61) to obtain the decomposition and to get the left
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rotation quaternion and the right rotation quaternion.

AI �

�
���
ap aq ar as
bp bq br bs
cp cq cr cs
dp dq dr ds

�
��� �

�
���
a
b
c
d

�
���
�
p q r s

�
. (2.62)

Similarly, we could decompose MII using Eq. (2.61).

AII �

�
���

pa �pb �pc �pd
�qa qb qc qd
�ra rb rc rd
�sa sb sc sd

�
��� �

�
���

p
�q
�r
�s

�
���
�
a �b �c �d � . (2.63)

and

MII �MLpq̃�1
I,R
qMRpq̃�1

I,L
q. (2.64)

Consequently,

q̃
II,L

� q̃�1
I,R

(2.65)

and

q̃
II,R

� q̃�1
I,L
. (2.66)

Following the discussions in section 2.2, the Q matrix could be decomposed based

on the decomposition of X and M . For the first alignment with the reference Domain

I, we have the following relationship:

s
II
� Qpq̃�1

I,R
q � IE

q̃
Y
�P pq̃

Y
; ΛIq

rQpq̃
Y
qs �Qpq̃�1

I,L
q � s

I
. (2.67)

For the second alignment with reference Domain II, we have:

s
I

1 � Qpq̃�1
II,R

q � IE
q̃
Y
�P pq̃

Y
; ΛIIq

rQpq̃
Y
qs �Qpq̃�1

II,L
q � s

II

1. (2.68)

From Eq. (2.52), we know ΛII � ΛI . From Eq. (2.65) and Eq. (2.66), we have

q̃
II,L

� q̃�1
I,R

and q̃
I,R

� q̃�1
II,L

. Consequently, Eq. (2.68) can be written as:

s
I

1 � Qpq̃
I,L
q � IE

q̃
Y
�P pq̃

Y
; ΛIq

rQpq̃
Y
qs �Qpq̃

I,R
q � s

II

1. (2.69)
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In the above two equations, s
I

and s
II

are vectorized Saupe tensor of Domain I and

Domain II in the first alignment, s
I
1 and s

II
1 are vectorized Saupe tensor of Domain I

and Domain II in the second alignment. Based on Eq. (2.69), we could easily derive

s
II

1 � Qpq̃�1
I,R
q � IE

q̃
Y
�P pq̃

Y
; ΛIq

rQpq̃
Y
qs�1 �Qpq̃�1

I,L
q � s

I

1. (2.70)

From Eq. (2.67) and Eq. (2.70), the mathematical expression for switching the refer-

ence domain is almost the same as using a different alignment with the same reference

domain. The only difference is the middle matrix IE
q̃
Y
�P pq̃

Y
; ΛIq

rQpq̃
Y
qs�1, which is

the inverse of the averaging matrix IE
q̃
Y
�P pq̃

Y
; ΛIq

rQpq̃
Y
qs. Consequently, the middle

matrix acts like a concentrating operator and increases the eigenvalues of a Saupe

tensor. The increase on eigenvalues is expected because s
I
1 is an averaging product

of s
II
1 and s

II
1 should have larger eigenvalues. Additional functions have been im-

plemented to calculate the inverse IE
q̃
Y
�P pq̃

Y
; ΛIq

rQpq̃
Y
qs�1. According to Eq. (2.37),

the matrix IE
q̃
Y
�P pq̃

Y
; ΛIq

rQpq̃
Y
qs only have seven non-zero entries. If we define the

element in position i, j in matrix IE
q̃
Y
�P pq̃

Y
; ΛIq

rQpq̃
Y
qs as mij, we have:

IE
q̃
Y
�P pq̃

Y
; ΛIq

rQpq̃
Y
qs�1 �

�
�����

m22

m11m22�m12m21
� m12

m11m22�m12m21
0 0 0

� m21

m11m22�m12m21

m11

m11m22�m12m21
0 0 0

0 0 1
m33

0 0

0 0 0 1
m44

0

0 0 0 0 1
m55

�
����� .

(2.71)

With the minor revision, the brand and bound algorithm is able to find the best

solution satisfying Eq. (2.67) and Eq. (2.70).
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3

Results of the branch-and-bound method

3.1 Performance of the method with respect to noise

In order to test the performance of the method, I first observed the stability of the

solution under various levels of noise. The RDC data is simulated from an arbitrary

Bingham distribution. The Bingham distribution is considered as the ground truth.

The simulation is a forward process as shown in Fig. 1.3. Given a Bingham distri-

bution and two arbitrary orthogonal Saupe tensors of Domain I, the corresponding

Saupe tensors of Domain II can be calculated using Eq. 2.33. Using the Saupe tensors

of Domain I and Domain II, the RDCs can be calculated by Eq. 2.1. The bond vector

v for each RDC is sampled from a uniform distribution on the sphere S2. Then dif-

ferent levels of noise are added into the simulated RDCs. As in any real experiment,

only the RDCs with noise are available to us after the forward simulation.

Because we assume we have no access to the noise-free Saupe tensors and the

ground truth distribution, Saupe tensors are calculated from the noisy data using

the SVD method mentioned in section 2.1. The level of noise is quantified by the Q
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factor:

Q �

b°N
i�1pDcal

i �Dexp
i q2b°N

i�1pDexp
i q2

. (3.1)

Here, Dexp
i and Dcal

i are supposed to be the i-th experimental RDC and the i-th

RDC back-calculated from the calculated Saupe tensors, respectively. In our case,

Dexp
i is the i-th RDC generated by the forward simulation. The Q factor associated

with each dataset reflects the level of noise in the RDC data. The Q factor can

be considered as a measure of the noise to signal ratio. The noise level is generally

considered low when the Q factor is below 0.3 [20].

The solution corresponding to the calculated Saupe tensors is calculated by the

branch-and-bound algorithm. The solution will be compared to the ground truth.

The difference between the calculated solution and the ground truth is measured by

the square root of the Jensen-Shannon Divergence
?
JSD, which is a metric satisfying

the triangular inequality [21]. Jensen-Shannon Divergence JSD is calculated by the

following equation:

JSDpppxq||qpxqq � 1

2
DKLpppxq||mpxqq � 1

2
DKLpqpxq||mpxqq, (3.2)

where mpxq � 1
2
pppxq� qpxqq and DKL is the Kullback-Leibler divergence in Eq. 4.6.

Although the branch-and-bound algorithm is deterministic, the forward simula-

tion is stochastic. In addition, the performance of the method should be tested with

a variety of ground truth distributions. Consequently, the forward simulation was

repeated ten times for each noise level. The test results is summarized in Fig. 3.1.

In Fig. 3.1, the maximum, upper quartile, median, lower quartile and minimum

of
?
JSD are reported for each noise level. The noise level ranges from Q � 0 to

Q � 0.5. In the ideal case, when no noise is present, all the calculated solutions

are nearly the same as their corresponding ground truth. The result indicates the
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Figure 3.1: The performance of the branch-and-bound method with respect to
various noise levels in a box-whisker plot.

method works as expected. With the increase of the noise, the calculated solution

deviates more significantly from the ground truth. Although the
?
JSD maximums

are above 0.5 when Q � 0.3, 0.4, 0.5, the upper quartile remains around 0.2. It

indicates the method may still be able to find a good solution from a very noisy

dataset. In the noise level range from Q � 0 to Q � 0.2, the method can find a good

solution very close to the ground truth. As a guideline, datasets with noise level

below or around Q � 0.2 should be used.

3.2 Application to SpA-N

Staphylococcal protein A (SpA) is a key virulence factor that supports the invasion

of Staphylococcus aureus into the human body. SpA binds to an array of targets in

the host to disarm the immune system, facilitate the colonization and consequently
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contribute to the pathogenicity of S. aureus. The emergence of antibiotic-resistant

S. aureus strains has driven the search for vaccines with high efficacy to counteract

several virulence factors, including SpA [22]. Targeting virulence as opposed to bac-

terial cell growth may be a more effective way to avoid the emergence of resistant

strains. Structural studies of SpA and its interaction with host proteins would sup-

port rational design of improved vaccines or other therapeutics to diminish S. aureus

virulence. The binding targets of SpA include the Fc region of antibodies, the Fab

region of V
H
3 antigen receptors (e.g., IgM) on B cells, TNFR1 and EGFR [23, 24, 25].

There are five tandem functional domains in the N-terminal half of SpA (SpA-N).

The five domains share a high sequence identity and they are structurally and func-

tionally similar [26, 27, 24]. Recent studies indicate a correlation between the func-

tional plasticity and the structural flexibility of SpA-N. Conformational heterogeneity

of individual domains was observed by high-resolution X-ray crystallography [26, 28].

The backbone and side-chain dynamics presumably help SpA-N adapt to the bind-

ing interfaces of multiple partners. The interdomain dynamics were measured by

small-angle X-ray scattering (SAXS) experiments [29]. However, SAXS experiments

provide limited information about the distance distribution and they are insensitive

to the orientational change during interdomain motions. Consequently, the interdo-

main motion, especially its orientational component, remains poorly understood.

I applied the branch-and-bound method the motional decoupled RDC data of

SpA-N and found the best-fit solutions to the data. To describe the solutions, it

is first necessary to define the molecular frame of each domain. In the coordinate

frame of either Z or C domain, the z-axis of the domain is parallel to the helices

and points toward the N-termini of helices 1 and 3 , the y-axis is in the plane of

helix II and III, and the x-axis is perpendicular to the plane (Fig. 3.2). The 3D joint

interdomain orientational distribution can be visualized in a disk-on-sphere (DoS)

representation (Fig. 3.2). In this representation, the x, y, z-axes in Fig. 3.2 represent
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Figure 3.2: Continuous distribution of interdomain orientations models for ZLBT-
C shown in disk-on-sphere (DoS) views. Two solutions (shown in panels A and
C) give equivalently good fits to the data. Each panel shows the distribution from
a front view (top) and a back view (bottom). Also shown are atomistic models
whose interdomain orientation is the most probable in each solution. The linker
conformation and interdomain distance are arbitrary. (B) An example disk showing
the joint probabilities of 4 different different interdomain orientations, all with the
same z1 axis orientation but different rotations around z1.

the coordinate frame of the reference domain (Z domain) and each radial line on

a disk corresponds to a unique interdomain orientation. The location of the disk

on the sphere corresponds to the orientation of the z-axis of the C domain, while

the direction of the radial line corresponds to the x-axis of the C domain. The

representation is color coded, with red the highest probability and white the lowest

probability.

There are two solutions that can reproduce the RDC data nearly equally well

(Fig. 3.3). A priori, it is possible that any linear combination of the two solutions

could also fit the data. However, when we simulated a structural ensemble of the

B-C di-domain molecule in the absence of any binding partner using the RANCH

component of the EOM package [30], a strong disagreement was found between the
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Figure 3.3: RDC correlation plots. The correlation plot of the first OLC
dataset(blue) and the second OLC dataset(yellow) of Z domain and the RDCs back-
calculated from solution 1(A) and solution 2(B).

first solution described above and the structural ensembles generated by RANCH.

The DoS plot of the simulation shows a large void of probability in the white area

(Fig. 3.4), suggesting that most conformers in this area have steric clashes. The dis-

tribution mode of the first solution largely coincides with this low probability region

and 37.3% of its probability falls into the region (Fig. 3.4). Quantitatively, we defined

a clash score based on the probability of a distribution in the low probability region

and calculated clash scores for both solutions. The clash score of the first solution

is more than two fold higher than that of the second solution. By thermodynamic

criteria, the simulated ensemble is also in better agreement with the second solution

than the first solution or any linear combination of the two. These results suggest

that the first solution is a so-called “ghost” solution [1], but further studies with

additional orthogonal alignments are necessary to definitively rule it out.

In the second solution, the most probable interdomain orientation has the z-axis

of C domain close to the minus x-axis of Z domain and the x-axis of C domain close

to the minus z-axis of Z domain. It should be noted that the marginal distribution of
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Figure 3.4: Comparing calculated interdomain orientational distribution with the
simulated di-domain orientational distribution. The first(A) and the second(B) best
calculated interdomain orientational distributions and the simulated interdomain
orientational distribution(C) in the disk representation. The bottom of each panel
shows the distribution from an opposite view. The color goes from red, yellow, green,
blue to white as probability decreases.

the z-axis is relatively broad but the marginal distribution of the x-axis is narrow. In

Fig. 3.2, the region bounded by the green color takes 9.7% of the entire interdomain

orientational space and it has a probability of 40%. The joint distribution suggests

that the flexible linker enables the two domains to sample a relatively large range of

the interdomain orientational space but somewhat restricts the orientation of the C

domain’s x-axis.

3.3 Application to calmodulin

Using the NMR data of calmodulin [1], I calculated the alignment tensors of both do-

mains, which were subsequently fed into the branch-and-bound algorithm to search
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for optimal solutions. The first four optimal solutions were compared to the four con-

formations with highest maximum allowed probabilities(MAPs) in the 2007 JACS

paper [1]. More specifically, the inter-domain orientation corresponding to the max-

imum point of each optimal distribution was used for comparison. The four highest-

probability inter-domain orientations generally agree with the four high-MAP con-

formations, suggesting a consistency between the two methods.

In the 2007 JACS paper, an approach was presented to determine the maximum

allowed probabilities(MAPs) of inter-domain orientations [1]. The MAP value is not

the probability of an inter-domain orientation, instead, it represents the maximum

probability of that orientation in any distribution that satisfies the experimental con-

straints. In other words, the MAP value is a measure that represents the information

derived from experimental observables, but without a probabilistic interpretation. In

the calmodulin case, the distribution of MAP value has four modes. The inter-domain

conformations corresponding to local maxima of the four modes are shown in Fig.3.5.

In the RDC and PCS dataset of calmodulin [1], PCSs were measured for the

N-terminal domain and RDCs were measured for the C-terminal domain. Although

PCS and RDC are different physical observables, both were induced by the magnetic

alignment of lanthanide ions and thus they share the same alignment tensor. Align-

ment tensors of the N-terminal domain were calculated using the PCSs while align-

ment tensors of the C-terminal domain were calculated using the RDCs. All tensors

were calculated using a SVD method following the protocol described in [14]. Axial

and rhombic components of the alignment tensors are summarized in Table 3.1 and

Table 3.2. The determined alignment tensors are consistent with the reported align-

ment tensors in the 2004 PNAS paper and the 2007 JACS paper [31, 1]. Experimen-

tal RDCs/PCSs were plotted against the back-calculated ones in Fig.3.6 and Fig.3.7.
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Figure 3.5: N-terminal domains of the four conformations are shown as orange rib-
bons. The C-terminal domains are shown as brown, cyan, purple and green ribbons,
respectively. A-D. the four high-MAP conformations.

Table 3.1: Axial and rhombic components of N-terminal domain of calmodulin

Dy3� Tb3� Tm3�

∆χax 34.78 35.54 24.75 �10�32m3

∆χrh -15.10 -12.42 -8.42 �10�32m3

Table 3.2: Axial and rhombic components of C-terminal domain of calmodulin

Dy3� Tb3� Tm3�

∆χax -2.05 -1.85 -3.74 �10�32m3

∆χrh 0.85 0.93 2.46 �10�32m3

The calculated alignment tensors were subsequently fed into the fitting algorithm
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Figure 3.6: Experimental PCSs of the N-terminal domain are plotted against back-
calculated PCSs in three alignments(Dy/Tb/Tm). RMSD and Q factor are reported
in the bottom right corner.

Figure 3.7: Experimental RDCs of the C-terminal domain are plotted against
back-calculated RDCs in three alignments(Dy/Tb/Tm). RMSD and Q factor are
reported in the bottom right corner.

to find the optimal solution for the distribution. The objective function used in the

fitting algorithm is Eq. 2.45.

The global minimum has a objective function value of 8.014. After analyz-

ing all solutions with objective function values under 15, another three different

solutions were found. They have objective function values of 8.017, 9.894 and

11.56, respectively. The value of the objective function does not mean much, but

solutions with objective function values above 15 barely satisfy the experimental

constraints. The four solutions are different from each other because the Jensen-

Shannon divergences(JSD) between each pair of their corresponding distributions
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are above 0.2. The divergences between each pair are summarized in Table 3.3.

Table 3.3: JSD between the four solutions of CaM

JSD Dist 1 Dist2 Dist3 Dist4

Dist1 — 0.55 0.94 0.95
Dist2 — 0.96 0.95
Dist3 — 0.55
Dist4 —

Inter-domain orientations are expressed as quaternions in the distribution. From

the first four optimal solutions, I derived the quaternion with highest probability in

each solution for distribution. From the four conformations shown in Fig.3.5, I also

calculated the quaternion corresponding to each conformation. By comparing the

two sets of quaternions, it can be shown easily that the highest probability orienta-

tion in solution 1 is nearly identical to conformation 3, the orientation in solution 2 is

nearly identical to conformation 1, the orientation in solution 3 is nearly identical to

conformation 4 and the orientation in solution 4 is nearly identical to conformation 2.

The similarities between the highest probability orientations and conformations are

first quantified by the inner product of their corresponding quaternions. The inner

product range from 0 to 1, indicating least to highest similarity. The result is sum-

marized in Table 3.4. I also applied another similarity measure called FAA percentile

on the inter-domain orientations [32]. The percentile presents the fraction of all ori-

entations that have a larger geometric difference from one orientation in the pair

than the difference between the two in the pair. It ranges from 0 to 100, indicating

least to highest similarity. In addition, inter-domain conformations corresponding to

the quaternion pairs are shown in Fig. 3.8 to provide a more intuitive comparison.
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Figure 3.8: The N-terminal domain of each panel is shaded in orange. Cyan
structures represent the MAP conformations. Brown structures represent the highest
probability orientations calculated by the branch-and-bound method.

Table 3.4: Similarity between the quaternions representing the maximum probability
orientation of the four solutions of CaM

orientation1
and con-
former3

orientation2
and con-
former1

orientation3
and con-
former4

orientation4
and con-
former2

Inner product 0.94 0.95 0.96 0.93
FAA per-

centile 98.2 99.1 98.9 98.6

The continuous probabilistic approach and the MAP method agree with each

other in general. Four solutions were observed when fitting for distributions and

four MAP maxima were observed in the 2007 JACS paper. The existence of multiple

solutions or multiple modes could indicate a degeneracy in the RDC and PCS data of

calmodulin, which does not have the information content to distinguish the solutions.

Alternatively, all the modes could be real motional modes of calmodulin. The fact

of finding multiple solutions indicates that the continuous probabilistic approach has

the ability to detect multiple modes even though the algorithm uses a unimodal

model for fitting.
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4

The maximum entropy method

4.1 The reasons to choose the maximum entropy solution

Following the discussion in section 1.2, our problem is an ill-posed inverse problem

which may have an infinite number of solutions. Because all the solutions satisfy

the experimental observables, we need some other criteria to select one from the

others. One good criterion could be the one which Boltzmann used to construct the

Boltzmann distribution. When constructing the Boltzmann distribution, Boltzmann

faced a very similar problem. Given the total energy of a system Etotal and the total

number of particles N , what is the probability of a state with certain state energy

E. The problem is clearly another ill-posed inverse problem and it does not have a

unique solution. At the end, Boltzmann chose to find the most probable distribution,

which can be realized in the maximum number of ways. In the discrete case, the

energy level is partitioned into s small intervals. Suppose the i-th interval is occupied

with Ni particles. The number of ways to be realized is calculated by the following

equation:

W � N !

N1!N2! . . . Ns!
. (4.1)
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When N is large enough, Eq. 4.1 can be calculated using the Stirling approximation,

which is:

lnW � �N
ş

i�1

Ni

N
ln
Ni

N
� �N

ş

i�1

pi ln pi, (4.2)

where pi � Ni

N
. Eq. 4.2 indicates that the entropy is a measure of the number of ways

to be realized. In order to get the most probable distribution, we need to maximize

the entropy of the distribution. For the continuous case, the entropy measure could

be differential entropy:

Spppxqq � �
»
ppxq ln ppxqdx. (4.3)

Consequently, differential entropy is a reasonable criterion and we could use it as a

regularization to solve our inverse problem.

In addition, maximizing the entropy enforces smoothness to the distribution. In

other words, we are reconstructing a function with most low frequency components

and with little high frequency components. It is reasonable to exclude high frequency

oscillations in the reconstructed distribution because of what we observe in the IErQs
matrix (Eq. 2.18). The IErQs matrix carries all the information content we can use

for the reconstruction. However, the matrix only contains information about second-

order circular moments. High frequency oscillations are invisible to these low-order

moments, so including high frequency oscillations introduces additional assumptions

and possibly biases into the reconstruction. As a result, it is reasonable to exclude

them and thus avoid biases in the result.

At last but not least, the maximum entropy solution is the correct solution from

the Bayesian point of view. Bayesian probability does not represent the frequency

of an event over an infinite amount of time, instead, it represents our state of knowl-

edge. A probability distribution is inferred from observables. It may change when

42



additional information is introduced. Nonetheless, the probability distribution repre-

sents our state of knowledge given the limited information we currently have. Within

the Bayesian system, we have the Bayes’ law:

P pA|Bq � P pB|AqP pAq
P pBq (4.4)

Using Eq. 4.4, we can infer a probability distribution given a prior distribution P pAq
and current evidences B. However, we lack the prior distribution to start with in

our problem. The problem of obtaining the prior distribution dates back to the

time of James Bernoulli, when he proposed the principle of insufficient reasons. The

principle of maximum entropy is a modern replacement, first expounded by Edwin

T. Jaynes [33, 34]. According to the principle, the distribution with the maximum

entropy best represents our current state of knowledge. The maximum entropy so-

lution also agrees with the Bayes law. In our problem, it is physically reasonable to

assign equal probability to each state/conformation without any prior information.

It can be proved that the maximum entropy solution is the same as the Bayesian

inference result obtained by updating a uniform distribution [35].

4.2 The maximum entropy solution takes the exponential form

Before going into the details of the maximum entropy method, we first need to have

a good definition of entropy. For discrete problems, we can use the Shannon entropy:

S � �
¸
i

pi ln pi. (4.5)

For continuous problems, we can extend the concept of Shannon entropy into the

continuous domain and use the differential entropy in Eq. 4.3. However, there are

problems associated with this simple extension. First, the differential entropy is not

always non-negative. Second, the differential entropy is not invariant with respect
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to change of variables. In order to overcome these intrinsic problems associated with

the differential entropy, we can use the Kullback-Leibler(KL) divergence between our

target distribution ppxq and a reference distribution qpxq. The KL divergence is also

known as the relative entropy:

DKLpppxq||qpxqq �
»
ppxq ln

ppxq
qpxqdx. (4.6)

Here, we choose the uniform distribution upxq as the reference distribution. So the

relative entropy becomes:

Spppxqq �
»
ppxq ln

ppxq
upxqdx. (4.7)

The relative entropy overcomes the previous problems. It is always non-negative and

it is invariant under parameter transformations. Although the differential entropy

has certain problems, I still use the differential entropy in the following derivations

for simplicity. The conclusion holds for relative entropy as well.

Based on the discussion in section 2.1, the elements in the Q matrix are circular

moments of interdomain motions. Consequently, one goal is to find a reasonable

orientation distribution satisfying the circular moments constraints. By following

the reasons stated in section 4.1, the other goal is to maximize the entropy of the

distribution. In summary, we have the following optimization problem:

maximize
ppxq

Spppxqq � �
»
ppxq ln ppxqdx

subject to

»
ppxqdx � 1; xripxqy �

»
ripxqppxqdx � mi, i � 1, . . . , n.

(4.8)

where ppxq is the probability density function of the orientation distribution. Spppxqq
is the differential entropy of the continuous function. xripxqy is a circular moment

which should equal to the experimental observable mi. The distribution is also

enforced to be normalized.
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For our problem, we could use the method of Lagrange multipliers to find the

local maximum of entropy function Spppxqq subject to the equality constraints. For

this purpose, a Lagrangian is constructed as:

Lpppxq, λ0, . . . , λnq � � ³ ppxq ln ppxqdx� λ0p
³
ppxqdx� 1q �°n

i�1 λip
³
ripxqppxqdx�miq.

(4.9)

Because all the terms in the Lagrangian are integrals over x, the Lagrangian is not a

function of x, but a functional. So we vary the probability distribution ppxq instead

of x to change the Lagrangian. Nonetheless, the method of Lagrangian multipliers

still work. If a maximum entropy solution exists, then the solution corresponds to a

stationary point of the Lagrangian Lpppxq, λ0, . . . , λnq. In the stationary point, all

the equality constraints are satisfied:

BL
Bλ0 �

»
ppxqdx� 1 � 0, (4.10)

BL
Bλi �

»
ripxqppxqdx�mi � 0, i � 1, . . . , n. (4.11)

The entropy of the probability distribution also reach one of its extremes. It should be

noted that the method of Lagrange multipliers yield a necessary but not a sufficient

condition for optimality.

Because the Lagrangian is a functional, the entropy attains an extreme when the

functional derivative equals zero:

BL
Bppxq � � ln ppxq � 1 � λ0 �

ņ

i�1

λiripxq � 0. (4.12)

Consequently, we have our maximum entropy solution in the form of:

ppxq � exppλ0 � 1 �
ņ

i�1

λiripxqq. (4.13)
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If we redefine λ0 � λ0 � 1, we have a more compact form:

ppxq � exppλ0 �
ņ

i�1

λiripxqq. (4.14)

Because the probability distribution needs to be normalized, we have the following

relationship:

»
exppλ0 �

ņ

i�1

λiripxqqdx � 1, (4.15)

expp�λ0q �
»

expp
ņ

i�1

λiripxqqdx. (4.16)

Conventionally, we name the right-hand side of Eq. 4.16 as the partition function Z.

So:

Z �
»

expp
ņ

i�1

λiripxqqdx, (4.17)

λ0 � � lnZ. (4.18)

Assume a solution exists and the solution has the Lagrange multipliers as Λ� �
pλ�0 , λ�1 , . . . , λ�nq. The probability density function of the solution is:

p�pxq � exppλ�0 �
ņ

i�1

λ�i ripxqq. (4.19)

The solution achieves the maximum entropy among all solutions satisfying the con-

straints. If we define any distribution satisfying the constraints as qpxq, then we

always have:

Spqpxqq ¤ Spp�pxqq (4.20)

4.3 The Lagrange multipliers can be solved through a dual problem

In our optimization problem, the goal is to find the set of Lagrange multipliers that

maximize the entropy and satisfy the constraints. However, we could also view the
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Figure 4.1: The primal and the dual problem. The primal problem is to find the
maximum in the set of X. The dual problem is to find the minimum in the set of Y.

problem from a different point of view. If we have a function which provides an upper

bound of the entropy, the other way to solve the problem is to find the minimum of

the upper-bound function. The minimum is always larger than or equal to entropy

of any distribution qpxq. When the minimum equals the maximum entropy Spp�pxqq,
we can solve the Lagrange multipliers by finding the minimum of the upper-bound

function. In this perspective, the original maximum entropy problem is the primal

problem, searching for the minimum of the upper-bound function is the dual problem

(Fig. 4.1). Next, I will show the construction of the upper-bound function and how

to search for its global minimum.

As discussed in section 4.2, KL divergence DKL is a measure of the difference

between two probability distributions. For any two probability distributions, the

measure DKL is always non-negative. Suppose we have two distributions. The first

one is p�pxq in Eq. 4.19. The second one is any probability distribution that takes

the following exponential form but not necessarily satisfies the moment constraints
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in Eq. 4.8:

tpxq � exppλ0 �
ņ

i�1

λiripxqq. (4.21)

Because DKLpp�pxq||tpxqq ¥ 0, we have:

»
p�pxq ln

p�pxq
tpxq ¥ 0, (4.22)

�
»
p�pxq ln p�pxq ¤ �

»
p�pxq ln tpxq. (4.23)

From Spp�pxqq � � ³ p�pxq ln p�pxq and Eq. 4.21, we have:

Spp�pxqq ¤ �
»
p�pxqpλ0 �

ņ

i�1

λiripxqq � �λ0 �
ņ

i�1

λimi, (4.24)

and

Spqpxqq ¤ Spp�pxqq ¤ �λ0 �
ņ

i�1

λimi. (4.25)

Eq. 4.25 provides the upper bound we need to generate the dual problem. We can

also conclude the duality gap is zero because the equality of Eq. 4.24 can be achieved

when pλ0, λ1, . . . , λnq � pλ�0 , λ�1 , . . . , λ�nq.
Based on the above discussions, a new objective function can be constructed as:

W � �λ0 �
ņ

i�1

λimi. (4.26)

From Eq. 4.18, we also have:

W � lnZ �
ņ

i�1

λimi. (4.27)

Now, to solve Lagrange multipliers of the maximum entropy solution, we only need

to find the minimum of Eq. 4.27. We also observe the followings in a stationary point
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of the objective function 4.27:

BW
Bλi � xripxqy �mi � 0, i � 1, . . . , n. (4.28)

The resulted probability distribution is also normalized by construction, so the dis-

tribution indeed satisfies all constraints.

4.4 The dual problem is a convex optimization problem

The purpose of converting the primal problem to its dual problem is to exploit a

special property of the new objective function 4.27. As it turns out, the function is

strictly convex. The strict convexity gives us two guarantees. First, there is only

one unique solution assuming any solution exists. Second, the global minimum can

be found provably by applying gradient descent methods. The rest of the section

presents a proof of the convexity [36, 6].

Given the objective function 4.27, we can construct its Hessian matrix. Using

Eq. 4.27, the first order partial derivative with respect to λi is:

BW
Bλi �

1

Z

BZ
Bλi �mi. (4.29)

Then the second order partial derivative with respect to λi and λj is:

BW
BλiBλj �

1

Z2
p BZ
BλiBλjZ � BZ

Bλi
BZ
Bλj q, (4.30)

BW
BλiBλj �

1

Z

BZ
BλiBλj �

1

Z

BZ
Bλi

1

Z

BZ
Bλj . (4.31)
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As Z is defined in Eq. 4.17, we have:

1

Z

BZ
BλiBλj �

1

Z

Bp³ expp°n
i�1 λiripxqqdxq
BλiBλj

� 1

Z

»
ripxqrjpxq expp

ņ

i�1

λiripxqqdx

� xripxqrjpxqy,

(4.32)

1

Z

BZ
Bλi �

1

Z

Bp³ expp°n
i�1 λiripxqqdxq
Bλi

� 1

Z

»
ripxq expp

ņ

i�1

λiripxqqdx

� xripxqy.

(4.33)

So

BW
BλiBλj � xripxqrjpxqy � xripxqyxrjpxqy, (4.34)

BW
BλiBλj � xripxqrjpxqy � 2xripxqyxrjpxqy � xripxqyxrjpxqy, (4.35)

BW
BλiBλj �

1

Z

»
ripxqrjpxq expp

ņ

i�1

λiripxqqdx� 1

Z

»
ripxq expp

ņ

i�1

λiripxqqdxxrjpxqy

� xripxqy 1

Z

»
ripxq expp

ņ

i�1

λiripxqqdx� xripxqyxrjpxqy 1

Z

»
expp

ņ

i�1

λiripxqqdx,

(4.36)

BW
BλiBλj � 1

Z

³pripxqrjpxq � ripxqxrjpxqy � xripxqyrjpxq � xripxqrjpxqyq expp°n
i�1 λiripxqqdx.

(4.37)

BW
BλiBλj �

1

Z

»
pripxq � xripxqyqprjpxq � xrjpxqyq expp

ņ

i�1

λiripxqqdx

� xpripxq � xripxqyqprjpxq � xrjpxqyqy.
(4.38)
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Define function Bipxq as:

Bipxq � ripxq � xripxqy, (4.39)

so we have more compact form of the second order derivative:

BW
BλiBλj � xBipxqBjpxqy. (4.40)

The Hessian matrix of the objective function 4.27 takes the following form:

HpW q �

�
����
xB1pxqB1pxqy xB1pxqB2pxqy . . . xB1pxqBnpxqy
xB1pxqB2pxqy xB2pxqB2pxqy . . . xB2pxqBnpxqy

...
...

. . .
...

xB1pxqBnpxqy xB2pxqBnpxqy . . . xBnpxqBnpxqy

�
���� . (4.41)

where HpW qi,j � BW
BλiBλj � xBipxqBjpxqy. To prove the objective function is convex,

we need to prove the Hessian matrix HpW q is positive semi-definite. For any vector

v � pv1, v2, . . . , vnq, we have:

vTHpW qv � vT

�
����
xB1pxqB1pxqy xB1pxqB2pxqy . . . xB1pxqBnpxqy
xB1pxqB2pxqy xB2pxqB2pxqy . . . xB2pxqBnpxqy

...
...

. . .
...

xB1pxqBnpxqy xB2pxqBnpxqy . . . xBnpxqBnpxqy

�
����v

�
ņ

i,j�1

vivjxBipxqBjpxqy

�
ņ

i,j�1

xviBipxqvjBjpxqy

� xp
ņ

i�1

viBipxqq2y

¥ 0.

(4.42)

The equality in Eq. 4.42 obtains when

ņ

i�1

viBipxq � 0, (4.43)
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which means functions in
°n
i�1 viBipxq are linear dependent. The functions are the

moment functions ripxq and a constant function c0 �
°n
i�1xripxqy. The next section

will show the functions in our problem are orthogonal to each other, so the objective

function 4.27 is strictly convex.

4.5 Linear combinations of the functions in the Q̃ matrix are or-
thonormal functions

We have seen the Q matrix in Eq. 2.18. However, the circular moment functions

are not orthogonal to each other. One of the problem is that the vectorized Saupe

tensors s � rSxx, Syy, Sxy, Sxz, SyzsT do not have coordinates based on orthogonal

unit vectors. Because of the constraint Sxx � Syy � Szz � 0, a Saupe tensor has six

different elements but only five degrees of freedom (DOFs). Consequently, variables

Sxx, Syy and Szz live in a plane of the three dimensional space. Suppose a vector v

on the plane is:

v � Sxxi � Syyj � Szzk, (4.44)

where i, j and k are three orthogonal base vectors. We can construct a new pair of

base vectors:

i1 �
?

2

2
pi � jq, (4.45)

j1 �
?

6

6
p�i � j � 2kq. (4.46)

The new base vectors are orthonormal and they are on the plane Sxx�Syy�Szz � 0.

If we write vector v regarding to the new bases, we have:

v � p
?

2

2
Sxx �

?
2

2
Syyq

?
2

2
pi � jq �

?
6

2
Szz

?
6

6
p�i � j � 2kq

� p
?

2

2
Sxx �

?
2

2
Syyqi1 �

?
6

2
Szzj

1.

(4.47)
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As a result, we could format the vectorized Saupe tensor in a different way:

s̃ � r
?

6

2
Szz,

?
2

2
Sxx �

?
2

2
Syy,

?
2Sxy,

?
2Sxz,

?
2SyzsT , (4.48)

where the coordinates are based on orthogonal unit vectors. In order to use the

format, Q matrix has to be reformatted as well. The new Q̃matrix takes the following

form:

Q̃ �

?
5

4 4
?

2π

�
������

1
2
p2z2

3
� z2

1
� z2

2
q

?
3
2
pz2

1
� z2

2
q ?

3z1z2

?
3z1z3

?
3z2z3?

3
6
p2x2

3
� x2

1
� x2

2
� 2y2

3
� y2

1
� y2

2
q 1

2
px2

1
� x2

2
� y2

1
� y2

2
q x1x2 � y1y2 x1x3 � y1y3 x2x3 � y2y3?

3
3
p2x3y3 � x1y1 � x2y2q x1y1 � x2y2 x1y2 � x2y1 x1y3 � x3y1 x2y3 � x3y2?

3
3
p2x3z3 � x1z1 � x2z2q x1z1 � x2z2 x1z2 � x2z1 x1z3 � x3z1 x2z3 � x3z2?

3
3
p2y3z3 � y1z1 � y2z2q y1z1 � y2z2 y1z2 � y2z1 y1z3 � y3z1 y2z3 � y3z2

�
������

(4.49)

The elements in the Q̃ matrix are functions. It can be proved that the functions

in Eq. 4.49 are orthonormal functions and that they are orthogonal to a constant

function (Appendix B). Based on the discussion in the previous section, given the

expectation of the 25 functions, we can construct a strictly convex objective function

and we can guarantee to find the global optimum if one exists. However, getting all

25 expectations can be hard through experiments. Most of the time, we only have a

couple linear combinations of the moments. Previous studies have derived methods

to orthogonalize the linear combination coefficients [20]. Basically, the method uses

a SVD algorithm to find orthogonal principle components out of the experimentally

determined Saupe tensors. The following is going to prove that the conclusion holds

if the linear combination coefficient vectors are orthonormal vectors.

Using the Q̃ matrix, we can establish the following relationship between s̃
I

and

s̃
II
:

s̃
II
� 4 4

?
2π?
5

IErQ̃s � s̃
I
, (4.50)
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where IErQ̃s is an element-wise expectation of the Q̃ matrix in the following form

IErQ̃s �

?
5

4 4
?

2π

�
������

1
2
x2z2

3
� z2

1
� z2

2
y

?
3
2
xz2

1
� z2

2
y ?

3xz1z2y
?

3xz1z3y
?

3xz2z3y?
3
6
x2x2

3
� x2

1
� x2

2
� 2y2

3
� y2

1
� y2

2
y 1

2
xx2

1
� x2

2
� y2

1
� y2

2
y xx1x2 � y1y2y xx1x3 � y1y3y xx2x3 � y2y3y?

3
3
x2x3y3 � x1y1 � x2y2y xx1y1 � x2y2y xx1y2 � x2y1y xx1y3 � x3y1y xx2y3 � x3y2y?

3
3
x2x3z3 � x1z1 � x2z2y xx1z1 � x2z2y xx1z2 � x2z1y xx1z3 � x3z1y xx2z3 � x3z2y?

3
3
x2y3z3 � y1z1 � y2z2y xy1z1 � y2z2y xy1z2 � y2z1y xy1z3 � y3z1y xy2z3 � y3z2y

�
������
.

(4.51)

If we define each element in the Q̃ matrix as Q̃i,jpRq, the expectation matrix becomes:

IErQ̃s �

�
�����

xQ̃1,1y xQ̃1,2y xQ̃1,3y xQ̃1,4y xQ̃1,5y
xQ̃2,1y xQ̃2,2y xQ̃2,3y xQ̃2,4y xQ̃2,5y
xQ̃3,1y xQ̃3,2y xQ̃3,3y xQ̃3,4y xQ̃3,5y
xQ̃4,1y xQ̃4,2y xQ̃4,3y xQ̃4,4y xQ̃4,5y
xQ̃5,1y xQ̃5,2y xQ̃5,3y xQ̃5,4y xQ̃5,5y

�
����� , (4.52)

where R is the rotation matrix in Eq. 2.6. Similar to Eq. 2.19, we also have:

G̃ij �
»
SOp3q

Q̃ijP pRqdR. (4.53)

Suppose we have one pair of normalized Saupe tensors s̃
I
� rs̃

I,1
, s̃

I,2
, s̃

I,3
, s̃

I,4
, s̃

I,5
s and

s̃
II
� rs̃

II,1
, s̃

II,2
, s̃

II,3
, s̃

II,4
, s̃

II,5
s. We have five linear relationships:

s̃
II,i

� s̃
I,1
xQ̃i,1y � s̃

I,2
xQ̃i,2y � s̃

I,3
xQ̃i,3y � s̃

I,4
xQ̃i,4y � s̃

I,5
xQ̃i,5y; i � 1, . . . , 5. (4.54)

Define new functions Oipi � 1, . . . , 5q as:

Oi � s̃
I,1
Q̃i,1 � s̃

I,2
Q̃i,2 � s̃

I,3
Q̃i,3 � s̃

I,4
Q̃i,4 � s̃

I,5
Q̃i,5; i � 1, . . . , 5. (4.55)

We have:

s̃
II,i

� xOiy; i � 1, . . . , 5. (4.56)

Here, Oi is a linear combination of the 25 functions. It can be proved that Oi is
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normalized.

»
O2
i dR �

»
p

5̧

j�1

s̃
I,j
Q̃i,jq2dR

�
5̧

j�1

s̃2
I,j

»
Q̃2
i,jdR �

¸
j�k

s̃
I,j
s̃

I,k

»
Q̃i,jQ̃i,kdR

(4.57)

Because Q̃i,j are orthonormal functions,
³
Q̃2
i,jdR � 1 and

³
Q̃i,jQ̃i,kdR � 0. We have:

»
O2
i dR �

5̧

j�1

s̃2
I,j
� 1. (4.58)

It can also be proved that Oipi � 1, . . . , 5q are orthogonal to each other.

»
OiOjdR �

»
p

5̧

k�1

s̃
I,k
Q̃i,kqp

5̧

k�1

s̃
I,k
Q̃j,kqdR

�
5̧

k,l�1

s̃
I,k
s̃

I,l

»
Q̃i,kQ̃j,ldR

(4.59)

Because
³
Q̃i,kQ̃j,ldR � 0, we have:

»
OiOjdR � 0 (4.60)

Now, the linear combinations Oipi � 1, . . . , 5q weighted by one Saupe tensor are

orthonormal functions. Suppose we have more than one pair of normalized Saupe

tensors. We name the i-th pair as s̃i
I

and s̃i
II
. Define new functions Oj

i pi � 1, . . . , 5; q
as:

Oj
i � s̃j

I,1
Q̃i,1� s̃jI,2Q̃i,2� s̃jI,3Q̃i,3� s̃jI,4Q̃i,4� s̃jI,5Q̃i,5; i � 1, . . . , 5; j � 1, . . . , 5. (4.61)
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Now we want to prove Ok
i and Ol

j pk � lq are orthogonal to each other. If i � j, the

proof is similar to Eq. 4.60. When i � j, we have:

»
Ok
iO

l
idR �

»
p

5̧

j�1

s̃k
I,j
Q̃i,jqp

5̧

j�1

s̃l
I,j
Q̃i,jqdR

�
5̧

j�1

s̃k
I,j
s̃l

I,j

»
Q̃2
i,jdR �

¸
j1�j2

s̃k
I,j1
s̃l

I,j2

»
Q̃i,j1Q̃i,j2dR

�
5̧

j�1

s̃k
I,j
s̃l

I,j

(4.62)

Because s̃k
I

and s̃l
I

are orthogonal vectors, we have:

»
Ok
iO

l
idR �

5̧

j�1

s̃k
I,j
s̃l

I,j
� 0 (4.63)

In summary, all the linear combinations Oj
i pi � 1, . . . , 5; j � 1, . . . , 5q are orthonor-

mal functions. We can build the strictly convex objective function in Eq. 4.27 given

any number of Saupe tensors. The method can be applied to datasets with one to

five orthogonal alignments.

56



5

Conclusions

In this work, I have presented two provable algorithms to determine the interdomain

motions from RDCs. We have observed good performance of the branch-and-bound

algorithm both on simulated data and experimental data. The branch-and-bound

method calculates close-to-ground-truth solutions when the noise level is around

Q � 0.2 or under. The method also generates a result consistent with the MAP

method for the calmodulin data. Although the branch-and-bound method and the

MAP method differs from each other, the consistency suggests both methods capture

certain key features in the RDC data. In addition, the branch-and-bound method

offers a probabilistic interpretation of the result, which MAP fails to deliver. It should

be noted that the Bingham model is a unimodal distribution. The uni-modality is

the most biased assumption in the model. When the ground truth distribution is

a bimodal distribution, the method may fail to find the second mode. Interesting,

the method found two solutions from the SpA-N data and four solutions from the

calmodulin data. Although the multiple solutions could be due to the degeneracy

in the dataset and hence they are the ghost solutions, the solutions could also be

modes in a multi-modal distribution. If it is true, the branch-and-bound method has
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the ability to detect multiple modes. The branch-and-bound algorithm is provable

in the sense that it guarantees to find the global minimum of the objective function

in Eq. 2.45. However, we don’t have bound on the run time of algorithm. In the

worst case, the algorithm takes exponential time. Nonetheless, the run time of

algorithm depends on the pruning criteria in practice. If the pruning is efficient,

the algorithm usually takes much less time than the exponential time. In practice,

the branch-and-bound method runs very efficiently. Some runs take around 8 hours,

and most runs take less than 24 hours. Despite the good design of the branch-

and-bound algorithm, there is another factor significantly contributing to the run

time. The algorithm takes a huge amount of operations on evaluating the quartic

moments of a Bingham distribution. Instead of systematically sampling the SOp3q
space and summing up the samples, I converted the numerical integration problem

into evaluating a hypergeometric function and its second derivatives (Appendix A).

The evaluations are approximated by an established method. The efficiency of the

method contributes significantly to the run time of the algorithm. One limitation of

the branch-and-bound method is that it only works with motionally decoupled data.

It certainly raises the bar for experimental design. However, in motionally coupled

data, the global tumbling information and the interdomain motion information are

convolved with each other. Without making assumptions about the coupling, it is

impossible to separate them. Unless we have a solid method to predict the coupling

mechanism, motionally decoupled data is required to make correct interpretations.

On the other hand, I have extended the branch-and-bound method to incorporate

data with different reference domains. Consequently, the method can work with any

kind of motionally decoupled data.

The second algorithm is a maximum entropy algorithm. There are extensive stud-

ies on the maximum entropy problem [33, 34, 36, 6]. Our problem fits perfectly to the

existing theoretical framework. There are two reasons for developing the maximum
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entropy method. First, as we have discussed, the branch-and-bound method uses

the Bingham model. Although the model is reasonable, it introduces assumptions

and biases into the result. Consequently, it is reasonable to avoid specific models

and use a weaker assumption, maximum entropy. Maximum entropy solution is the

least biased solution representing our state of knowledge. The maximum entropy

method also has the ability to present multiple modes in the solution if the data

suggests. Second, the current maximum entropy method can be extended to solve

bigger problems. The immediate next step is to determine the joint distribution of

both interdomain distance and orientation from RDCs and PCSs. We have some

preliminary work on PCSs and we know they are moments of the joint distance and

orientation distribution. PCSs certainly contain the information to derive the joint

distribution and we need to a method to deal with PCSs. Although the maximum

entropy method seems a very reasonable choice on the problem, there are still two

questions to be answered before we have a solid method. First, we don’t have a

succinct formalism like the Q matrix to summarize the information content in PCSs.

So the moment functions of PCSs are clearly linearly dependent. Using the same

theoretical framework in Chapter 4, we can conclude that the objective function for

the PCSs problem is still convex. However, the linearly dependent functions generate

redundant Lagrange multipliers, increasing the dimensionality of the search problem

significantly. The gradient descent search in this high dimensional space may still

be efficient, but we need to test it before giving any conclusion. Second, without

the Q matrix, or even the Saupe tensor to summarize the information content in

PCSs, the input will contain more noise. The Saupe tensor is usually determined

from dozens of RDCs. The five elements in the Saupe tensors are calculated from

a SVD. The majority of noise is eliminated in the SVD process. However, without

the SVD process, raw PCSs may contain a large amount of noise. The presence of

significant noise may threaten the existence of a solution. In summary, the maximum
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entropy method delivers the ideal answers for problems associated with RDCs and

PCSs. Future work needs to be done in order to incorporate PCSs into the current

framework.
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Appendix A

Numerical integration of the Bingham probability
density function

The appendix provides an efficient way to evaluate the quartic moments xq4
i
y and

xq2
i
q2
j
y over S3 given a Bingham distribution. We first observe that the normalization

constant cpΛq in Eq. 2.34 can be expressed as the confluent hypergeometric function

of matrix argument:

1F1p1
2

; 2; Λq �
»

exppq̃TΛq̃qdq̃. (A.1)

As a result, we can rewrite Eq. 2.34 in the following form:

P pq̃ ; Λq � c�1pΛq exppq̃TΛq̃q

� exppq̃TΛq̃q³
exppq̃TΛq̃qdq̃

� exppq̃TΛq̃q
1F1p12 ; 2; Λq .

(A.2)
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Define Λ � Diagpλ1, λ2, λ3, λ4q and q̃ � rq1 , q2 , q3 , q4sT . We also observe that for the

numerator on the right hand side of Eq. A.2, its derivative regarding to λi is:

B exppq̃TΛq̃q
Bλi � q2

i
exppq̃TΛq̃q. (A.3)

From the two observations, the first kind of quartic moments xq4
i
y can be written as:

xq4
i
y � c�1pΛq

»
q4
i

exppq̃TΛq̃qdq̃

�
³
q4
i

exppq̃TΛq̃qdq̃
1F1p12 ; 2; Λq

� 1

1F1p12 ; 2; Λq
B21F1p12 ; 2; Λq

Bλ2i

(A.4)

The other kind of quartic moments xq2
i
q2
j
y can be written as:

xq2
i
q2
j
y � c�1pΛq

»
q2
i
q2
j

exppq̃TΛq̃qdq̃

�
³
q2
i
q2
j

exppq̃TΛq̃qdq̃
1F1p12 ; 2; Λq

� 1

1F1p12 ; 2; Λq
B21F1p12 ; 2; Λq

BλiBλj

(A.5)

Now we only need to evaluate the hypergeometric function 1F1p12 ; 2; Λq and its sec-

ond derivatives to calculate the quartic moments. Fortunately, the hypergeometric

function 1F1p12 ; 2; Λq can be evaluated very efficiently by an established method [18].

Its derivatives are calculated by numerical differentiation.
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Appendix B

The functions in the Q̃ matrix are orthonormal

In this appendix, I give a proof that the functions in the Q̃ matrix are orthonormal.

It should be noted that the elements of the Q̃ matrix are functions of a rotation

matrix. We could parameterize the rotation matrix with Euler angles α, β and γ.

R �
�
� x1 y1 z1

x2 y2 z2

x3 y3 z3

�
�

�
�
� cospαq cospβq cospγq � sinpαq sinpγq � cospαq cospβq cospγq � sinpαq cospγq cospαq sinpβq

sinpαq cospβq cospγq � cospαq sinpγq � sinpαq cospβq sinpγq � cospαq cospγq sinpαq sinpβq
� sinpβq cospγq sinpβq sinpγq cospβq

�
� .

(B.1)

Although Euler angles are generally avoided because of the singularity and ambiguity,

they are used here for the convenience of integration calculation. Because Euler

angles are used, the volume element of the transformation dV needs to be calculated.

First, we calculate the Jacobian as:

J � rBRBα ,
BR
Bβ ,

BR
Bγ s. (B.2)
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Then,

dV �
a

detpJTJqdαdβdγ (B.3)

I first evaluated the orthogonality between the 25 functions Q̃i,j and a constant

function c: »
cQ̃i,jdV (B.4)

The integrations were evaluated by Mathematica. All 25 integrations equal zero,

indicating the 25 functions are orthogonal to a constant function. Then I evaluated

the orthogonality between the 25 functions Q̃i,j:

»
Q̃i,jQ̃k,ldV (B.5)

Again, the integrations were evaluated by Mathematica. Out of the 325 integra-

tions, 300 integrations equal zero. They are the integrations involving two different

functions. So the functions are orthogonal to each other. In addition, the other 25

integrations result in the same constant, indicating they are all normalized.
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