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3 Axioms of Probability

The question here is: how can we mathematically define a random experiment? What we have
are outcomes (which tell you exactly what happens), events (sets containing certain outcomes),
and probability (which attaches to every event the likelihood that it happens). We need to
agree on which properties these objects must have in order to compute with them and develop
a theory.

When we have finitely many equally likely outcomes all is clear and we have already seen
many examples. However, as is common in mathematics, infinite sets are much harder to deal
with. For example, we will soon see what it means to choose a random point within a unit circle.
On the other hand, we will also see that there is no way to choose at random a positive integer
— remember that “at random” means all choices are equally likely, unless otherwise specified.

Finally, a probability space is a triple (Ω,F , P ). The first object Ω is an arbitrary set,
repesenting the set of outcomes, sometimes called the sample space.

The second object F is a collection of events, that is, a set of subsets of Ω. Therefore, an
event A ∈ F is necessarily a subset of Ω. Can we just say that each A ⊂ Ω is an event? In this
course you can assume so without worry, although there are good reasons for not assuming so
in general ! I will give the definition of what properties F needs to satisfy, but this is only for
illustration and you should take a course in measure theory to understand what is really going
on. Namely, F needs to be a σ-algebra, which means (1) ∅ ∈ F , (2) A ∈ F =⇒ Ac ∈ F , and
(3) A1, A2, · · · ∈ F =⇒ ∪∞i=1Ai ∈ F .

What is important is that you can take the complement Ac of an event A (i.e., Ac happens
when A does not happen), unions of two or more events (i.e., A1 ∪A2 happens when either A1

or A2 happens), and intersections of two or more events (i.e., A1 ∩ A2 happens when both A1

and A2 happen). We call events A1, A2, . . . pairwise disjoint if Ai ∩ Aj = ∅ if i 6= j — that is,
at most one of these events can occur.

Finally, the probability P is a number attached to every event A and satisfies the following
three axioms:

Axiom 1. For every event A, P (A) ≥ 0.

Axiom 2. P (Ω) = 1.

Axiom 3. If A1, A2, . . . is a sequence of pairwise disjoint events, then

P (
∞⋃

i=1

Ai) =
∞∑

i=1

P (Ai).

Whenever we have an abstract definition such as this one, the first thing to do is to look for
examples. Here are some.

Example 3.1. Ω = {1, 2, 3, 4, 5, 6},

P (A) =
(number of elements in A)

6
.
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The random experiment here is rolling a fair die. Clearly, this can be generalized to any finite
set with equally likely outcomes.

Example 3.2. Ω = {1, 2, . . .} and you have numbers p1, p2, . . . ≥ 0 with p1 + p2 + . . . = 1. For
any A ⊂ Ω,

P (A) =
∑

i∈A

pi.

For example, toss a fair coin repeatedly until the first Heads. Your outcome is the number of
tosses. Here, pi = 1

2i .

Note that pi cannot be chosen to be equal, as you cannot make the sum of infinitely many
equal numbers to be 1.

Example 3.3. Pick a point from inside the unit circle centered at the origin. Here, Ω = {(x, y) :
x2 + y2 < 1} and

P (A) =
(area of A)

π
.

It is important to observe that if A is a singleton (a set whose element is a single point), then
P (A) = 0. This means that we cannot attach the probability to outcomes — you hit a single
point (or even a line) with probability 0, but a “fatter” set with positive area you hit with
positive probability.

Another important theoretical remark: this is a case where A cannot be an arbitrary subset
of the circle — for some sets area cannot be defined!

Consequences of the axioms

(C0) P (∅) = 0.

Proof . In Axiom 3, take all sets to be ∅.

(C1) If A1 ∩A2 = ∅, then P (A1 ∪A2) = P (A1) + P (A2).

Proof . In Axiom 3, take all sets other than first two to be ∅.

(C2)

P (Ac) = 1− P (A).

Proof . Apply (C1) to A1 = A, A2 = Ac.
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(C3) 0 ≤ P (A) ≤ 1.

Proof . Use that P (Ac) ≥ 0 in (C2).

(C4) If A ⊂ B, P (B) = P (A) + P (B \A) ≥ P (A).

Proof . Use (C1) for A1 = A and A2 = B \A.

(C5) P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof . Let P (A \B) = p1, P (A∩B) = p12 and P (B \A) = p2, and note that A \B, A∩B, and
B\A are pairwise disjoint. Then P (A) = p1+p12, P (B) = p2+p12, and P (A∪B) = p1+p2+p12.

(C6)
P (A1 ∪A2 ∪A3) = P (A1) + P (A2) + P (A3)

− P (A1 ∩A2)− P (A1 ∩A3)− P (A2 ∩A2)
+ P (A1 ∩A2 ∩A3)

and more generally

P (A1 ∪ · · · ∪An) =
n∑

i=1

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩Aj) +
∑

1≤i<j<k≤n

P (Ai ∩Aj ∩Ak) + . . .

+ (−1)n−1P (A1 ∩ · · · ∩An).

This is called the inclusion-exclusion formula and is commonly used when it is easier to compute
probabilities of intersections than of unions.

Proof . We prove this only for n = 3. Let p1 = P (A1 ∩ Ac
2 ∩ Ac

3), p2 = P (Ac
1 ∩ A2 ∩ Ac

3),
p3 = P (Ac

1 ∩Ac
2 ∩A3), p12 = P (A1 ∩A2 ∩Ac

3), p13 = P (A1 ∩Ac
2 ∩A3), p23 = P (Ac

1 ∩A2 ∩A3),
and p123 = P (A1 ∩ A2 ∩ A3). Again, note that all sets are pairwise disjoint and that the right
hand side of (6) is

(p1 + p12 + p13 + p123) + (p2 + p12 + p23 + p123) + (p3 + p13 + p23 + p123)
− (p12 + p123)− (p13 + p123)− (p23 + p123)
+ p123

= p1 + p2 + p3 + p12 + p13 + p23 + p123 = P (A1 ∪A2 ∪A3).
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Example 3.4. Pick an integer in [1, 1000] at random. Compute the probability that it is
divisible neither by 12 nor by 15.

The sample space consists of the 1000 integers between 1 and 1000 and let Ar be the subset
consisting of integers divisible by r. The cardinality of Ar is b1000/rc. Another simple fact
is that Ar ∩ As = Alcm(r,s), where lcm stands for the least common multiple. Our probability
equals

1− P (A12 ∪A15) = 1− P (A12)− P (A15) + P (A12 ∩A15)
= 1− P (A12)− P (A15) + P (A60)

= 1− 83
1000

− 66
1000

+
16

1000
= 0.867.

Example 3.5. Sit 3 men and 4 women at random in a row. What is the probability that either
all the men or all the women end up sitting together?

Here, A1 = {all women sit together}, A2 = {all men sit together}, A1 ∩ A2 = {both women
and men sit together}, and so the answer is

P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2) =
4! · 4!

7!
+

5! · 3!
7!

− 2! · 3! · 4!
7!

.

Example 3.6. A group of 3 Norwegians, 4 Swedes, and 5 Finns is seated at random around a
table. Compute the probability that at least one of the three groups ends up sitting together.

Define AN = {Norwegians sit together} and similarly AS , AF . We have

P (AN ) =
3! · 9!
11!

, P (AS) =
4! · 8!
11!

, P (AN ) =
5! · 7!
11!

,

P (AN ∩AS) =
3! · 4! · 6!

11!
, P (AN ∩AF ) =

3! · 5! · 5!
11!

, P (AS ∩AF ) =
4! · 5! · 4!

11!
,

P (AN ∩AS ∩AF ) =
3! · 4! · 5! · 2!

11!
.

Therefore,

P (AN ∪AS ∪AF ) =
3! · 9! + 4! · 8! + 5! · 7!− 3! · 4! · 6!− 3! · 5! · 5!− 4! · 5! · 4! + 3! · 4! · 5! · 2!

11!
.

Example 3.7. Matching problem. A large company with n employees has a scheme according
to which each employee buys a Christmas gift and the gifts are then distributed at random to
the employees. What is the probability that someone gets his or her own gift?

Note that this is different from asking, assuming that you are one of the employees, for the
probability that you get your own gift, which is 1

n .

Let Ai = {ith employee gets his or her own gift}. Then, what we are looking for is

P (
n⋃

i=1

Ai).
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We have

P (Ai) =
1
n

(for all i),

P (Ai ∩Aj) =
(n− 2)!

n!
=

1
n(n− 1)

(for all i < j),

P (Ai ∩Aj ∩Ak) =
(n− 3)!

n!
=

1
n(n− 1)(n− 2)

(for all i < j < k),
. . .

P (A1 ∩ · · · ∩An) =
1
n!

.

Therefore, our answer is

n · 1
n
−

(
n

2

)
· 1
n(n− 1)

+
(

n

3

)
· 1
n(n− 1)(n− 2)

− . . . + (−1)n−1 1
n!

= 1− 1
2!

+
1
3!

+ . . . + (−1)n−1 1
n!

→ 1− 1
e
≈ 0.6321 (as n →∞).

Example 3.8. Birthday Problem. Assume that there are k people in the room. What is
the probability that there are two who share a birthday? We will ignore leap years, assume
all birthdays are equally likely, and generalize the problem a little: from n possible birthdays,
sample k times with replacement.

P (a shared birthday) = 1− P (no shared birthdays) = 1− n · (n− 1) · · · (n− k + 1)
nk

.

When n = 365, the lowest k for which the above exceeds 0.5 is, famously, k = 23. Some values
are given in the following table.

k prob. for n = 365
10 0.1169
23 0.5073
41 0.9032
57 0.9901
70 0.9992

Occurences of this problem are quite common in various contexts, so we give another example.
Each day, the Massachusetts lottery chooses a four digit number at random, with leading 0’s
allowed. Thus, this is sampling with replacement from among n = 10, 000 choices each day. On
February 6, 1978, the Boston Evening Globe reported that

“During [the lottery’s] 22 months’ existence [...], no winning number has ever been
repeated. [David] Hughes, the expert [and a lottery official] doesn’t expect to see
duplicate winners until about half of the 10, 000 possibilities have been exhausted.”
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What would an informed reader make of this? Assuming k = 660 days, the probability of no
repetition works out to be about 2.19 · 10−10, making it a remarkably improbable event. What
happened was that Mr. Hughes, not understanding the Birthday Problem, did not check for
repetitions, confident that there would not be any. Apologetic lottery officials announced later
that there indeed were repetitions.

Example 3.9. Coupon Collector Problem. Within the context of the previous problem, assume
that k ≥ n and compute P (all n birthdays are represented).

More often, this is described in terms of cereal boxes, each of which contains one of n different
cards (coupons), chosen at random. If you buy k boxes, what is the probability that you have
a complete collection?

When k = n, our probability is n!
nn . More generally, let

Ai = {ith birthday is missing}.

Then, we need to compute

1− P (
n⋃

i=1

Ai).

Now,

P (Ai) =
(n− 1)k

nk
(for all i)

P (Ai ∩Aj) =
(n− 2)k

nk
(for all i < j)

. . .

P (A1 ∩ · · · ∩An) = 0

and our answer is

1− n

(
n− 1

n

)k

+
(

n

2

)(
n− 2

n

)k

− . . . + (−1)n−1

(
n

n− 1

)(
1
n

)k

=
n∑

i=0

(
n

i

)
(−1)i

(
1− i

n

)k

.

This must be n!
nn for k = n, and 0 when k < n, neither of which is obvious from the formula.

Neither will you, for large n, get anything close to the correct numbers when k ≤ n if you try to
compute the probabilities by computer, due to the very large size of summands with alternating
signs and the resulting rounding errors. We will return to this problem later for a much more
efficient computational method, but some numbers are in the two tables below. Another remark
for those who know a lot of combinatorics: you will perhaps notice that the above probability
is n!

nk Sk,n, where Sk,n is the Stirling number of the second kind.
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k prob. for n = 6
13 0.5139
23 0.9108
36 0.9915

k prob. for n = 365
1607 0.0101
1854 0.1003
2287 0.5004
2972 0.9002
3828 0.9900
4669 0.9990

More examples with combinatorial flavor

We will now do more problems which would rather belong to the previous chapter, but are a
little harder, so we do them here instead.

Example 3.10. Roll a die 12 times. Compute the probability that a number occurs 6 times
and two other numbers occur three times each.

The number of outcomes is 612. To count the number of good outcomes:

1. Pick the number that occurs 6 times:
(
6
1

)
= 6 choices.

2. Pick the two numbers that occur 3 times each:
(
5
2

)
choices.

3. Pick slots (rolls) for the number that occurs 6 times:
(
12
6

)
choices.

4. Pick slots for one of the numbers that occur 3 times:
(
6
3

)
choices.

Therefore, our probability is
6(5

2)(
12
6 )(6

3)
612 .

Example 3.11. You have 10 pairs of socks in the closet. Pick 8 socks at random. For every i,
compute the probability that you get i complete pairs of socks.

There are
(
20
8

)
outcomes. To count the number of good outcomes:

1. Pick i pairs of socks from the 10:
(
10
i

)
choices.

2. Pick pairs which are represented by a single sock:
(
10−i
8−2i

)
choices.

3. Pick a sock from each of the latter pairs: 28−2i choices.

Therefore, our probability is
28−2i(10−i

8−2i)(
10
i )

(20
8 ) .
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Example 3.12. Poker Hands. In the definitions, the word value refers to A, K, Q, J, 10, 9,
8, 7, 6, 5, 4, 3, 2. This sequence orders the cards in descending consecutive values, with one
exception: an Ace may be regarded as 1 for the purposes of making a straight (but note that,
for example, K, A, 1, 2, 3 is not a valid straight sequence — A can only begin or end a straight).
From the lowest to the highest, here are the hands:
(a) one pair : two cards of the same value plus 3 cards with different values

J♠ J♣ 9♥ Q♣ 4♠

(b) two pairs: two pairs plus another card of different value

J♠ J♣ 9♥ 9♣ 3♠

(c) three of a kind : three cards of the same value plus two with different values

Q♠ Q♣ Q♥ 9♣ 3♠

(d) straight : five cards with consecutive values

5♥ 4♣ 3♣ 2♥ A♠

(e) flush: five cards of the same suit

K♣ 9♣ 7♣ 6♣ 3♣

(f) full house: a three of a kind and a pair

J♣ J♦ J♥ 3♣ 3♠

(g) four of a kind : four cards of the same value

K♣ K♦ K♥ K♣ 10♠

(e) straight flush: five cards of the same suit with consecutive values

A♠ K♠ Q♠ J♠ 10♠

Here are the probabilities:

hand no. combinations approx. prob.
one pair 13 · (12

3

) · (4
2

) · 43 0.422569
two pairs

(
13
2

) · 11 · (4
2

) · (4
2

) · 4 0.047539
three of a kind 13 · (12

2

) · (4
3

) · 42 0.021128
straight 10 · 45 0.003940
flush 4 · (13

5

)
0.001981

full house 13 · 12 · (4
3

) · (4
2

)
0.001441

four of a kind 13 · 12 · 4 0.000240
straight flush 10 · 4 0.000015
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Note that the probabilities of a straight and a flush above include the possibility of a straight
flush.

Let us see how some of these are computed. First, the number of all outcomes is
(
52
5

)
=

2, 598, 960. Then, for example, for the three of a kind , the number of good outcomes may be
obtained by listing the number of choices:

1. Choose a value for the triple: 13.

2. Choose the values of other two cards:
(
12
2

)
.

3. Pick three cards from the four of the same chosen value:
(
4
3

)
.

4. Pick a card (i.e., the suit) from each of the two remaining values: 42.

One could do the same for one pair :

1. Pick a number for the pair: 13.

2. Pick the other three numbers:
(
12
3

)

3. Pick two cards from the value of the pair:
(
4
2

)
.

4. Pick the suits of the other three values: 43

And for the flush:

1. Pick a suit: 4.

2. Pick five numbers:
(
13
5

)

Our final worked out case is straight flush:

1. Pick a suit: 4.

2. Pick the beginning number: 10.

We end this example by computing the probability of not getting any hand listed above,
that is,

P (nothing) = P (all cards with different values)− P (straight or flush)

=

(
13
5

) · 45

(
52
5

) − (P (straight) + P (flush)− P (straight flush))

=

(
13
5

) · 45 − 10 · 45 − 4 · (13
5

)
+ 40(

52
5

)

≈ 0.5012.
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Example 3.13. Assume that 20 Scandinavians, 10 Finns, and 10 Danes, are to be distributed
at random into 10 rooms, 2 per room. What is the probability that exactly 2i rooms are mixed,
i = 0, . . . 5?

This is an example when careful thinking about what the outcomes should be really pays
off. Consider the following model for distributing the Scandinavians into rooms. First arrange
them at random into a row of 20 slots S1, S2, . . . , S20. Assume that room 1 takes people in
slots S1, S2, so let us call these two slots R1. Similarly, room 2 takes people in slots S3, S4, so
let us call these two slots R2, etc.

Now, it is clear that we only need to keep track of the distribution of 10 D’s into the 20 slots,
corresponding to the positions of the 10 Danes. Any such distribution constitutes an outcome
and they are equally likely. Their number is

(
20
10

)
.

To get 2i (for example, 4) mixed rooms, start by choosing 2i (ex., 4) out of the 10 rooms
which are going to be mixed; there are

(
10
2i

)
choices. You also need to decide into which slot in

each of the 2i chosen mixed rooms the D goes, for 22i choices.

Once these two choices are made, you still have 10− 2i (ex., 6) D’s to distribute into 5− i
(ex., 3) rooms, as there are two D’s in each of these rooms. For this, you need to choose 5− i
(ex., 3) rooms from the remaining 10 − 2i (ex., 6), for

(
10−2i
5−i

)
choices, and this choice fixes a

good outcome.

The final answer, therefore, is (
10
2i

)
22i

(
10−2i
5−i

)
(
20
10

) .

Problems

1. Roll a single die 10 times. Compute the following probabilities: (a) that you get at least one
6; (b) that you get at least one 6 and at least one 5; (c) that you get three 1’s, two 2’s, and five
3’s.

2. Three married couples take seats around a table at random. Compute P (no wife sits next to
her husband).

3. A group of 20 Scandinavians consists of 7 Swedes, 3 Finns, and 10 Norwegians. A committee
of five people is chosen at random from this group. What is the probability that at least one of
the three nations is not represented on the committee?

4. Choose each digit of a 5 digit number at random from digits 1, . . . 9. Compute the probability
that no digit appears more than twice.

5. Roll a fair die 10 times. (a) Compute the probability that at least one number occurs exactly
6 times. (b) Compute the probability that at least one number occurs exactly once.


