
A* IN PROTEIN (RE)DESIGNA* IN PROTEIN (RE)DESIGN

Presented by Nathan Guerin

CS/CBB 590

OUTLINEOUTLINE

1. Motivation
2. A* Algorithm
3. Properties of A*

MOTIVATIONMOTIVATION

A TYPICAL ROTAMER LIBRARYA TYPICAL ROTAMER LIBRARY

Type # Rotamers

Arginine 34

Lysine 27

Methionine 13

Glutamate 8

... ?

Suppose we have a decapeptide composed entirely of
Arginine.

Q: How many possible conformations are there?

A: conformations= 2.0644 ×3710 1015

TIME ANALYSISTIME ANALYSIS

Recall: conformations
Assume enumeration is instantaneous, energy
calculation takes 10 ms
Brute force takes ~650 000 years on a single
processor to �nd GMEC

Obviously this isn't going to work...

2.0644 × 1015

HOW IS THIS ACTUALLY DONE?HOW IS THIS ACTUALLY DONE?

BENEFITS OF PROVABLE ALGORITHMSBENEFITS OF PROVABLE ALGORITHMS

DEAD-END ELIMINATION (DEE)DEAD-END ELIMINATION (DEE)

See for more informationGeorgiev et al, 2008

https://www.ncbi.nlm.nih.gov/pubmed/18293294

THE DEE CRITERIONTHE DEE CRITERION

Given:

We can observe:

= + E() + E(,)ET Et′ ∑
i

ir ∑
i

∑
j>i

ir js

∀i, j(i ≠ j), E(,) ≥ E(,)max
s∈Rj

it js it jg

E(,) ≤ E(,)min
s∈Rj

ig js ig jg

DEE CRITERION: ENERGY WINDOWDEE CRITERION: ENERGY WINDOW

Thus if any satis�es this inequality:

It can be pruned.

ir

E() + E(,) >ir ∑
j≠i

min
s

ir js

E() + E(,) +it ∑
j≠i

max
s

it js Ew

CHOICES REMAIN. WE STILL NEED TO:CHOICES REMAIN. WE STILL NEED TO:

Find GMEC
Find ordered list of low-energy confs (for free energy
approximation)
Finish quicker than brute-force enumeration

THE A* ALGORITHMTHE A* ALGORITHM

A BRIEF HISTORYA BRIEF HISTORY

Originally developed by Hart, Nilsson, and Raphael in
1968
Leach and Lemon applied to discrete rotamer
problem in 1998
Georgiev et al. developed minimization-aware A* in
2008

ABOUT A*ABOUT A*

Fundamentally a graph-traversal problem
Finds lowest-cost path from point A to point B

Source

https://www.redblobgames.com/pathfinding/a-star/introduction.html#astar

THE THE PATHPATH AND AND COSTCOST IN PROTEIN DESIGN IN PROTEIN DESIGN

The path is the amino acid sequence. The target is
reached when all residues are assigned an amino acid
and rotamer
The cost is the energy of the conformation,
calculated by an energy function
Different amino acid and rotamer choices incur
varying costs

A* SEARCH: DEFINITIONSA* SEARCH: DEFINITIONS

 is a path, with nodes and
 is a lower bound on the cost of the complete

path
 is the known cost from to
 a heuristic estimating the remaining cost from

 to

f(x) = g(x) + h(x)

x xstart xend
f(x)

g(x) xstart xn
h(x)
xn xend

A* SEARCH: APPLIED TO PROTEINSA* SEARCH: APPLIED TO PROTEINS

 is a backbone template, with residues to

 is a lower bound energy of the protein
 is the known energy contributions from

to
 a heuristic estimating the energy contributions

of to

f(x) = g(x) + h(x)

x xstart
xend
f(x)
g(x) xstart
xn

h(x)
xn xend

A* SEARCH: THE PARTICULARSA* SEARCH: THE PARTICULARS
The A* search for protein design uses a tree.

Each level corresponds to a residue index; each node to an amino acid+rotamer at that index.
The numbers next to the nodes estimated costs and the numbers next to the edges the

actual costs .
h(x)
g(x)

A* SEARCH IN RELATION TO OTHER ALGORITHMSA* SEARCH IN RELATION TO OTHER ALGORITHMS

When is 0, we have Dijkstra's algorithm
When is 0, we have greedy best-�rst search
See

f(x) = g(x) + h(x)

h(x)
g(x)

more here

https://www.redblobgames.com/pathfinding/a-star/introduction.html#astar

VALUE OF TAKEN PATHVALUE OF TAKEN PATH

g() = [E() + E(, bb) + E(,)]xn ∑
i=1

n

ir ir ∑
j=1

i−1

ir js

ESTIMATION OF HEURISTICESTIMATION OF HEURISTIC

h() = [E() + E(, bb) + E(,) + E(,)]xn ∑
j=n+1

N

min
s

js js ∑
i=1

n

ir js ∑
k=n+1

j−1

min
t

kt js

KEEP A PRIORITY QUEUEKEEP A PRIORITY QUEUE

The search always expands nodes with the minimum
. It maintains a list of expanded nodes

Thus, it expands nodes that it anticipates will lead to
the best energy
See binary heap implementation of priority queue

f(x)

here

https://www.cs.usfca.edu/~galles/visualization/Heap.html

EXAMPLE: LET'S DESIGN A TRIPEPTIDEEXAMPLE: LET'S DESIGN A TRIPEPTIDE

After DEE pruning:
Residue A - 3 Rotamers
Residue B - 3 Rotamers
Residue C - 2 Rotamers

Assume values of and are given at each
node
(From Leach and Lemon, 1998)

g(x) h(x)

EXAMPLEEXAMPLE

EXAMPLEEXAMPLE

EXAMPLEEXAMPLE

EXAMPLEEXAMPLE

EXAMPLEEXAMPLE

EXAMPLEEXAMPLE

EXAMPLEEXAMPLE

EXAMPLEEXAMPLE

A* ALGORITHM - PROPERTIESA* ALGORITHM - PROPERTIES

ADMISSIBILITYADMISSIBILITY

A graph search algorithm is said to be admissible if it
�nds the optimal path from (start) to (target) if a

path exists.

Dijkstra's algorithm is admissible
Greedy best-�rst search is not

p s t

CLAIM: A* IS CLAIM: A* IS ADMISSIBLEADMISSIBLE

1. A* terminates
2. A* �nds the GMEC (and additional conformations in

order of increasing energy)

A* TERMINATESA* TERMINATES
Since we're dealing with proteins, assume a �nite number of residues

1. Graph is an acyclic, directed tree with depth equal to
number of residues

2. Thus, there are a �nite number of paths from root to
leaves

3. Each root-to-leaf conformation is removed without
adding new items to priority queue

4. Thus, eventually the priority queue will run out of
items and the algorithm will terminate

A* FINDS OPTIMAL PATH: DEFINITIONSA* FINDS OPTIMAL PATH: DEFINITIONS

 - optimal path from to ,
 - optimal path from to
 - optimal path from to

(s)f ∗ s t { , , … , }ns n2 nt

(n)g∗ s n

(n)h∗ n t

A* FINDS OPTIMAL PATHA* FINDS OPTIMAL PATH

1. Assume we are on node , and is on the optimal
path . Then .

2. Since on optimal path,
3. Moreover,
4. Therefore,
5. Since optimal path passes through ,

 and
6. Implication: prior to reaching target, there will

always be a in priority queue with

n′ n′

s… t f() = g() + h()n′ n′ n′

n′ g() = ()n′ g∗ n′

h() ≤ ()n′ h∗ n′

f() ≤ () + () = ()n′ g∗ n′ h∗ n′ f ∗ n′

n′

() = (s)f ∗ n′ f ∗ f() ≤ (s)n′ f ∗

n′ f() ≤ (s)n′ f ∗

A* FINDS OPTIMAL PATH (CONTINUED)A* FINDS OPTIMAL PATH (CONTINUED)

Proof by contradiction: Assume that we've completely
assigned rotamers to a conformation and

. But since ,
. Since by the previous result we know

 is in the priority queue, then would have
chosen before , leading to before

. This contradicts the assumption that the
algorithm would complete �rst.

t
f(t) > (s)f ∗ f() ≤ (s)n′ f ∗

f() < f(t)n′

f()n′ A∗
f()n′ f(t) (s)f ∗

f(t)
f(t)

IS A* IS A* ADMISSIBLEADMISSIBLE??

Recall: Admissibility is termination and optimality
Shown terminates
Shown �nds optimal path
Thus, is admissible

A∗

A∗

A∗

OTHER PROPERTIES WORTH MENTIONINGOTHER PROPERTIES WORTH MENTIONING

A more powerful, yet admissible, heuristic expands
fewer nodes
If a heuristic satis�es a monotone restriction

, then the start to any

expanded node is the optimal path to that node.
Proofs in Nilsson's Principles of Arti�cial Intelligence

h() ≤ h() + c(,)ni nj ni nj

CREDITSCREDITS

Swati Jain's presentation from Algorithms for Drug
Design for many images
Nils Nilsson's "Principles of Arti�cal Intelligence" for
proofs
Amit Patel's website Red Blog Games

https://www.redblobgames.com/

QUESTIONS?QUESTIONS?

