A* IN PROTEIN (RE)DESIGN

Presented by Nathan Guerin CS/CBB 590

OUTLINE

Motivation
 A* Algorithm
 Properties of A*

MOTIVATION

A TYPICAL ROTAMER LIBRARY

Туре	# Rotamers
Arginine	34
Lysine	27
Methionine	13
Glutamate	8
•••	?

Suppose we have a decapeptide composed entirely of Arginine.

Q: How many possible conformations are there? A: $37^{10} = 2.0644 imes 10^{15}$ conformations

TIME ANALYSIS

- Recall: $2.0644 imes 10^{15}$ conformations
- Assume enumeration is instantaneous, energy calculation takes 10 ms
- Brute force takes ~650 000 years on a single processor to find GMEC

<u>Obviously this isn't going to work...</u>

HOW IS THIS ACTUALLY DONE?

BENEFITS OF PROVABLE ALGORITHMS

DEAD-END ELIMINATION (DEE)

See Georgiev et al, 2008 for more information

THE DEE CRITERION

Given:

$$E_T=E_{t'}+\sum_i E(i_r)+\sum_i \sum_{j>i} E(i_r,j_s)$$

We can observe: $orall i, j(i
eq j), \max_{s\in R_j} E(i_t,j_s) \geq E(i_t,j_g) \ \min_{s\in R_j} E(i_g,j_s) \leq E(i_g,j_g)$

DEE CRITERION: ENERGY WINDOW

Thus if any i_r satisfies this inequality:

$$egin{aligned} E(i_r) + \sum_{j
eq i} \min_s E(i_r, j_s) > \ E(i_t) + \sum_{j
eq i} \max_s E(i_t, j_s) + E_w \end{aligned}$$

It can be pruned.

CHOICES REMAIN. WE STILL NEED TO:

- Find GMEC
- Find ordered list of low-energy confs (for free energy approximation)
- Finish quicker than brute-force enumeration

THE A* ALGORITHM

A BRIEF HISTORY

- Originally developed by Hart, Nilsson, and Raphael in 1968
- Leach and Lemon applied to discrete rotamer problem in 1998
- Georgiev et al. developed minimization-aware A* in 2008

ABOUT A*

- Fundamentally a graph-traversal problem
- Finds lowest-cost path from point A to point B

THE PATH AND COST IN PROTEIN DESIGN

- The path is the amino acid sequence. The target is reached when all residues are assigned an amino acid and rotamer
- The cost is the energy of the conformation, calculated by an energy function
- Different amino acid and rotamer choices incur varying costs

A* SEARCH: DEFINITIONS

$$f(x) = g(x) + h(x)$$

- x is a path, with nodes x_{start} and x_{end}
- f(x) is a lower bound on the cost of the complete path
- g(x) is the known cost from x_{start} to x_n
- h(x) a heuristic estimating the remaining cost from x_n to x_{end}

A* SEARCH: APPLIED TO PROTEINS

$$f(x) = g(x) + h(x)$$

- x is a backbone template, with residues x_{start} to x_{end}
- f(x) is a lower bound energy of the protein
- g(x) is the known energy contributions from x_{start} to x_n
- h(x) a heuristic estimating the energy contributions of x_n to x_{end}

A* SEARCH: THE PARTICULARS

The A^{*} search for protein design uses a tree.

Each level corresponds to a residue index; each node to an amino acid+rotamer at that index. The numbers next to the nodes estimated costs h(x) and the numbers next to the edges the actual costs g(x).

A* SEARCH IN RELATION TO OTHER ALGORITHMS

$$f(x) = g(x) + h(x)$$

- When h(x) is 0, we have Dijkstra's algorithm
- When g(x) is 0, we have greedy best-first search
- See more here

VALUE OF TAKEN PATH

$$g(x_n) = \sum_{i=1}^n [E(i_r) + E(i_r, bb) + \sum_{j=1}^{i-1} E(i_r, j_s)] \, .$$

ESTIMATION OF HEURISTIC

$$h(x_n) = \sum_{j=n+1}^N \min_s [E(j_s) + E(j_s, bb) + \sum_{i=1}^n E(i_r, j_s) + \sum_{k=n+1}^{j-1} \min_t E(k_t, j_s)]$$

KEEP A PRIORITY QUEUE

- The search always expands nodes with the minimum f(x). It maintains a list of expanded nodes
- Thus, it expands nodes that it anticipates will lead to the best energy
- See binary heap implementation of priority queue here

EXAMPLE: LET'S DESIGN A TRIPEPTIDE

- After DEE pruning:
 - Residue A 3 Rotamers
 - Residue B 3 Rotamers
 - Residue C 2 Rotamers
- Assume values of g(x) and h(x) are given at each node
- (From Leach and Lemon, 1998)

A* ALGORITHM - PROPERTIES

ADMISSIBILITY

A graph search algorithm is said to be admissible if it finds the optimal path p from s (start) to t (target) if a path exists.

- Dijkstra's algorithm is admissible
- Greedy best-first search is not

CLAIM: A* IS ADMISSIBLE

 A* terminates
 A* finds the GMEC (and additional conformations in order of increasing energy)

A* TERMINATES

Since we're dealing with proteins, assume a finite number of residues

- 1. Graph is an acyclic, directed tree with depth equal to number of residues
- 2. Thus, there are a finite number of paths from root to leaves
- 3. Each root-to-leaf conformation is removed without adding new items to priority queue
- 4. Thus, eventually the priority queue will run out of items and the algorithm will terminate

A* FINDS OPTIMAL PATH: DEFINITIONS

- $f^*(s)$ optimal path from s to $t, \{n_s, n_2, \ldots, n_t\}$
- $g^*(n)$ optimal path from s to n
- $h^*(n)$ optimal path from n to t

A* FINDS OPTIMAL PATH

1. Assume we are on node n', and n' is on the optimal path $\overline{s \dots t}$. Then $f(n') = \overline{g(n') + h(n')}$. 2. Since n' on optimal path, $g(n') = g^*(n')$ 3. Moreover, $h(n') \leq h^*(n')$ 4. Therefore, $f(n') \leq q^*(n') + h^*(n') = f^*(n')$ 5. Since optimal path passes through n', $f^*(n') = f^*(s)$ and $f(n') \leq f^*(s)$ 6. Implication: prior to reaching target, there will always be a n' in priority queue with $f(n') \leq f^*(s)$

A* FINDS OPTIMAL PATH (CONTINUED)

Proof by contradiction: Assume that we've completely assigned rotamers to a conformation t and $f(t) > f^*(s)$. But since $f(n') \leq f^*(s)$, f(n') < f(t). Since by the previous result we know f(n') is in the priority queue, then A* would have chosen f(n') before f(t), leading to $f^*(s)$ before f(t). This contradicts the assumption that the algorithm would complete f(t) first.

IS A* ADMISSIBLE?

- Recall: Admissibility is termination and optimality
- Shown A^* terminates
- Shown A^* finds optimal path
- Thus, A* is admissible

OTHER PROPERTIES WORTH MENTIONING

- A more powerful, yet admissible, heuristic expands fewer nodes
- If a heuristic satisfies a monotone restriction $h(n_i) \leq h(n_j) + c(n_i, n_j)$, then the start to any expanded node is the optimal path to that node.
- Proofs in Nilsson's Principles of Artificial Intelligence

CREDITS

- Swati Jain's presentation from Algorithms for Drug Design for many images
- Nils Nilsson's "Principles of Artifical Intelligence" for proofs
- Amit Patel's website Red Blog Games

QUESTIONS?