
BBK∗ (Branch and Bound over K∗): A Provable and
Efficient Ensemble-Based Algorithm to Optimize

Stability and Binding Affinity over Large Sequence
Spaces

Adegoke A. Ojewole1,3,†, Jonathan D. Jou1,†, Vance G. Fowler4, and
Bruce R. Donald1,2,∗

1 Department of Computer Science, Duke University, Durham, NC, USA
2 Department of Biochemistry, Duke University Medical Center, Durham NC, USA

3 Computational Biology and Bioinformatics Program, Duke University, Durham, NC, USA
4 Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA

Abstract. Protein design algorithms that compute binding affinity search for
sequences with an energetically favorable free energy of binding. Recent work
shows that the following design principles improve the biological accuracy of
protein design: ensemble-based design and continuous conformational flexibility.
Ensemble-based algorithms capture a measure of entropic contributions to bind-
ing affinity, Ka. Designs using backbone flexibility and continuous side-chain
flexibility better model conformational flexibility. A third design principle, prov-
able guarantees of accuracy, ensures that an algorithm computes the best se-
quences defined by the input model (i.e. input structures, energy function, and
allowed protein flexibility). However, previous provable methods that model en-
sembles and continuous flexibility are single-sequence algorithms, which are very
costly: linear in the number of sequences and thus exponential in the number of
mutable residues. To address these computational challenges, we introduce a new
protein design algorithm, BBK∗, that retains all aforementioned design principles
yet provably and efficiently computes the tightest-binding sequences. A key in-
novation of BBK∗ is the multi-sequence (MS) bound: BBK∗ efficiently computes
a single provable upper bound to approximate Ka for a combinatorial number of
sequences, and entirely avoids single-sequence computation for all provably sub-
optimal sequences. Thus, to our knowledge, BBK∗ is the first provable, ensemble-
based Ka algorithm to run in time sublinear in the number of sequences. Com-
putational experiments on 204 protein design problems show that BBK∗ finds
the tightest binding sequences while approximating Ka for up to 105-fold fewer
sequences than exhaustive enumeration. Furthermore, for 51 protein-ligand de-
sign problems, BBK∗ provably approximates Ka up to 1982-fold faster than the
previous state-of-the-art iMinDEE/A∗/K∗ algorithm. Therefore, BBK∗ not only
accelerates protein designs that are possible with previous provable algorithms,
but also efficiently performs designs that are too large for previous methods.

† These authors contributed equally to the work.
∗ Corresponding author: Bruce R. Donald, Tel: 919-660-6583, Fax: 919-660-6519, Email:

brd+recomb17@cs.duke.edu



1 Introduction

Protein design is the prediction of protein sequences with desired biochemical
functions, which often involve binding to a target ligand. Computational pro-
tein design casts functional design into a structural optimization problem whose
goal is to find amino acid sequences that fold into specified three-dimensional
structures. Protein design algorithms search a space defined by a biophysical in-
put model, which defines the sequence and structural search space (i.e. the input
structure, allowed amino acid mutations, and allowed protein flexibility); the
optimization objective (e.g. design for binding affinity); and the energy func-
tion [1]. Protein design algorithms [5,9] have successfully predicted protein se-
quences that fold and bind desired targets in vitro and in vivo. For example, these
algorithms have been used, with experimental validation, to predict drug resis-
tance [7,37,41] and to design enzymes [3,13,32,49], new drugs [19], inhibitors
of protein-protein interactions [15, 42], epitope-specific antibody probes [12],
and even neutralizing antibodies [17, 45].

Computational methods can potentially search a large number of sequences
to predict the proteins that bind most tightly to a target ligand in less time and
with fewer resources than in vitro methods such as phage display [2, 38]. How-
ever, four computational challenges have prevented protein design algorithms
from realizing this potential. First, for each binding interface, an exponentially
large number of conformations in each binding partner’s ensemble must be
pruned or considered to accurately predict binding affinity [5,15,18,32]. Second,
for each sequence, finding the lowest energy conformations that most influence
binding affinity is NP-hard [26, 39, 40, 55, 56], making algorithms that guaran-
tee optimality expensive for larger designs. Third, mutating a protein sequence
induces conformational changes in the protein structure. Since such conforma-
tional changes occur over many continuous degrees of freedom, algorithms that
model continuous flexibility must search over a large, continuous conformation
space. Fourth, the number of protein sequences (i.e. the sequence space) grows
exponentially with the number of simultaneously mutable residues in the design.
Therefore, previous algorithms either focus on accurately modeling smaller de-
signs or attempt larger designs by making simplifications that (a) ignore the
ensemble nature of proteins, (b) disregard continuous conformational flexibil-
ity, or (c) return heuristic solutions with no guarantees. A discussion of these
simplifications and their ramifications for protein design follows; see also Sup-
plementary Information [36] (SI) Section 2.

Global Minimum Energy Conformation (GMEC)-based algorithms [4, 10,
20,43,53] assume that the lowest energy conformation accurately predicts bind-
ing affinity. However, GMEC-based designs cannot accurately model entropic



change due to binding [6] and can disproportionately favor sequences with en-
ergetically favorable GMECs over sequences with tight binding affinity [3, 15,
32, 42, 46, 47]. Many protein design algorithms [29, 48, 50, 51, 53] rely on a
simplified, discrete model of side-chain flexibility. However, discrete rotamers
model a small subset of protein energetics, which are sensitive to small atomic
movements not permitted by the discrete model. To overcome this limitation,
researchers have developed provable algorithms [10, 15, 21, 22, 42, 43] that in-
corporate continuous side-chain flexibility [10,15]. Another important aspect of
design algorithms is the quality of the computed results. Whereas GMEC-based
design is NP-hard [26,40,55,56], computation of thermodynamic ensembles and
associated partition functions is #P-hard [35,52,53]. Provable protein design al-
gorithms either return the optimal sequences or conformations [4,10,23,28,43,
48, 50, 51, 53] with respect to the input model, or return provably good approx-
imate solutions [15, 21, 22, 32, 42]. Non-provable algorithms such as Metropo-
lis Monte Carlo methods [27, 29, 30] instead use stochastic methods to rapidly
sample the space described by the input model. These algorithms return solu-
tions without any guarantees. Thus, ensemble-based design, a realistic model of
structural flexibility, and provable optimality of the computed sequences with
respect to the input model improve the predictive power of protein design al-
gorithms. However, each of these design principles also increases the cost of
protein design (as a function of the number of sequences).

Single-sequence algorithms, which explicitly evaluate each possible sequence,
are powerful and versatile. Molecular dynamics [31, 57], for instance, is fre-
quently applied to design for binding affinity. The approach models ensem-
bles and continuous flexiblity. Provable algorithms have also been developed
to model these two phenomena. The K∗ algorithm [15, 32, 42] in OSPREY [10,
11, 13–15, 20–23, 25, 32, 42, 43] uses a combination of dead-end elimination
pruning [10,15] andA∗ [24,28,44] gap-free conformation enumeration to prov-
ably and efficiently approximate Ka. K∗ and all previous provable ensemble-
based algorithms that model continuous side-chain flexibility [21,22] are single-
sequence algorithms. The empirical and asymptotic runtime complexity of single-
sequence algorithms is linear in the number of possible sequences, and therefore
exponential in the number of mutable residues. Thus, designs with many muta-
ble residues rapidly become intractable when using single-sequence algorithms.
The COMETS algorithm [20] in OSPREY is the only provable multi-state design
algorithm that is more efficient than single-sequence algorithms. However, its
binding predictions are GMEC-based rather than ensemble-based. Additional
background and references are located in SI [36], Sec. 1.

To efficiently search large sequence spaces while retaining all the benefits of
provable guarantees, ensemble-based design, and continuous side-chain flexibil-



ity, we present a new, provable algorithm: Branch and Bound over K∗ (BBK∗).
The key innovation of BBK∗ is the multi-sequence (MS) bound: BBK∗ efficiently
computes upper and lower bounds on the binding affinities of partial sequences,
which are shared by a combinatorial number of full sequences. By avoiding
costly single-sequence computation, BBK∗ runs in time sublinear in the num-
ber of sequences. To our knowledge, BBK∗ is the first provable, ensemble-based
algorithm to do so. BBK∗ not only avoids explicitly computing all possible se-
quences, but also provably and efficiently enumerates sequences in a gap-free
decreasing order of binding affinity. Therefore, BBK∗ provides a vast perfor-
mance improvement over the previous state-of-the-art, by not only accelerating
protein designs that were possible with previous provable algorithms, but also
efficiently handling large designs that previous algorithms could not compute in
a reasonable amount of time.

By presenting BBK∗, our paper makes the following contributions:
1. A novel, ensemble-based algorithm that provably computes the same results

as the previous state of the art (exhaustive search over sequences) but is
empirically combinatorially faster, returns a gap-free list of sequences in
decreasing order of binding affinity, and runs in time sublinear in the number
of sequences.

2. Proofs of correctness for multi-sequence bounds, a key innovation in BBK∗.
3. A new two-pass bound that more efficiently computes a provable
ε-approximation to the desired partition functions.

4. 255 protein designs showing that BBK∗ approximates binding affinity for
full sequences up to 1982-fold faster than the best previous algorithm and
that BBK∗ computes the best binding sequences in a large sequence space
up to 105-fold more efficiently than exhaustive search.

5. Support for both continuous side-chain and backbone flexibility, demon-
strating the ability of BBK∗ to handle multiple modes of protein flexibility
in addition to large conformation and sequence spaces.

6. An implementation of BBK∗ in our laboratory’s open-source OSPREY [10,
11, 13–15, 20–23, 25, 32, 42, 43] protein design software package, available
for download as free software.

2 Computing the Partition Function

To successfully design for improved binding affinity Ka, design algorithms
must consider the energy of more than just the GMEC. In particular, all algo-
rithms that design for improvedKa optimize the ratio of partition function Z for
the bound and unbound states of the protein and ligand (Eq. 2). Protein design
can thus be cast as an optimization problem [5]. For an n-residue protein design



problem with at most a amino acids per mutable residue, let P , L, and PL de-
note the unbound protein, unbound ligand, and bound protein-ligand complex,
respectively. For each sequence s, let Q(s) be the set of discrete rigid rotamer
conformations defined by the allowed amino acids for each mutable residue of
s. For a rigid rotamer conformation c, letEX be a pairwise energy function with
respect to input structure X , which may be one of P , L, or PL. In particular,
we will consider the case of design with continuous rotamers [10, 15]. We de-
fine EX (c) to be the energy of c for structure X after energy-minimizing the
side-chains of mutable residues.

2.1 K∗

We define the Boltzmann-weighted partition function ZX (s) as:

ZX (s) =
∑

c∈Q(s)

exp(−EX (c)/RT ). (1)

We define the K∗ score, a partition function ratio that approximates binding
affinity Ka, as:

K∗(s) =
ZPL(s)

ZP (s)ZL(s)
. (2)

As stated in Sec. 1, the K∗ approximation and, by extension, the full parti-
tion function, are #P-hard to compute [35, 52, 53]. Therefore, researchers have
not only developed heuristic algorithms that rapidly compute loose partition
function bounds, but also developed efficient, provable algorithms that com-
pute ε-approximations to the partition function. Probabilistic algorithms bound
the partition function either provably [54] or non-provably [8]. An efficient ε-
approximation to ZX (s) is computed in [15,32,42]. However, these methods are
designed to compute partition functions for single sequences. For an n-residue
design with at most t possible amino acids at each residue and q rotamers per
amino acid, provable single-sequence methods must compute or bound the par-
tition functions of all tn sequences, each with qn conformations. Thus, previous
single-sequence algorithms for protein design for binding affinity take time ex-
ponential in n (O(tn)) when computing the sequence with the best predicted
binding affinity.

Therefore, to provably find the best binding sequences, new, efficient prov-
able algorithms are needed to search over an exponentially large sequence space,
in which each sequence represents an exponentially large conformation space.
BBK∗ addresses this need. BBK∗ compares partial sequences (for which some



mutable residues have not been assigned an amino acid identity) without com-
puting the partition functions for all full sequences (which assign a specific
amino acid to each mutable residue). BBK∗ computes bounds on the free en-
ergies of partial sequences, and avoids enumerating conformations from se-
quences with poor binding affinity, by pruning sequences during search. As we
will describe in Sec. 3, pruning these sequences circumvents prohibitive com-
putational costs required to compute many single-sequence K∗ scores.

3 A∗ Search Over Sequences, with Multi-sequence (MS) bounds

Fig. 1. A toy protein design problem in which conformational ensembles (A) and optimal
mutations (B) must be computed at 3 residues. Residues of the fibronectin F1 module (Fn,
blue ribbon), and of a fragment of S. aureus fibronectin binding protein A (FNBPA-5, green rib-
bon) are shown (PDB id: 2RL0). Side-chain conformations, labeled with amino acid identity, are
also shown per residue. (A) Previous provable methods require a fully defined sequence to com-
pute a single-sequence (SS) ε-approximation bound on binding affinity (i.e. a K∗ score, Eq. 2).
(B) A key innovation in this paper is the multi-sequence (MS) bound for binding affinity in
protein design. An MS bound is a provable bound on the binding affinity of a partial sequence.
Unassigned residues, whose amino acid identities are not defined by the partial sequence, adopt
side-chain conformations from multiple amino acids, shown as the blue, purple, pink, and light
blue ensemble. Thus, an MS bound is a provable upper bound on the binding affinity of all se-
quences containing that partial sequence, and is obtained without computing any SS bounds. The
Fn:FNBPA-5 design problem is described in Sec. 4.3.

It may at first seem counter-intuitive to compute the sequence with opti-
mal binding affinity, along with its predicted K∗ score, without explicitly com-
puting the K∗ scores of all possible sequences. Indeed, all previous ensemble-
based provable methods, as well as many heuristic methods, are single-sequence
methods: they must individually evaluate and compare each sequence to prov-
ably return the optimal sequence. In contrast, BBK∗ bounds the K∗ ratios of a
combinatorial number of sequences efficiently and can prune these sequences



without computing any single-sequence bounds. The key to this improvement
is the observation that a partial sequence s′ with poor predicted binding affin-
ity adversely affects the K∗ score of the combinatorial set of sequences that
contain s′. That is, the best possible K∗ score consistent with s′ limits the K∗

score of all sequences consistent with s′. Henceforth, we will refer to a bound
on the binding affinity for a sequence as a bound on the sequence. To compute a
bound on all sequences consistent with s′, BBK∗ computes the partition function
for an ensemble that contains conformations from multiple sequences. Fig. 1
illustrates the difference between single-sequence and multi-sequence ensem-
bles. The K∗ ratio of a multi-sequence ensemble is a provable upper bound on
the best possible K∗ ratio of all sequences that contain s′. This multi-sequence
bound (MS bound) is not only cheaper to compute, but it also allows BBK∗ to
compare a combinatorial number of sequences without computing any single-
sequence bounds. By bounding every possible sequence consistent with a partial
sequence, BBK∗ can provably eliminate those sequences, and prune a combina-
torial number sequences without performing any single-sequence computation.
Fig. 2 illustrates the combinatorial speedup provided by MS bound pruning,
whereby pruning the partial sequence obviates computation of all single se-
quences containing the partial sequence. Details of the algorithm, proofs of its
space and time complexity, and comparison to iMinDEE/A∗/K∗ are provided in
Appendix A of the SI [36]. An additional enhancement, pruning by fold stability
compared to wild type, is described in Appendix A.7 of the SI [36].

The improvement of BBK∗ over single-sequence methods can be measured
using cost per sequence. We show the improvement is threefold: BBK∗ (a) re-
duces the cost to compute a bound on a combinatorial number of sequences,
(b) eliminates all computational costs once a sequence is pruned, and (c) when
it must compute a bound for a single sequence, computes a bound that is in
many cases cheaper than the bounds computed by previous single-sequence al-
gorithms. To guarantee that the first sequence returned is optimal, an algorithm
must either compute or bound the partition function for all possible sequences.
Previous provable algorithms compute a provable single-sequence bound of
the partition function, called an ε-approximation (SS-ε bound), for each se-
quence [15, 32, 42]. These SS-ε bounds are guaranteed to be within a user-
specified ε of the K∗ score for a sequence. BBK∗ also provably returns the
optimal sequences, but does so without enumerating all possible sequences. In-
stead of SS-ε bounds, BBK∗ computes an MS bound, which is an upper bound
on the best possibleK∗ score of multiple sequences that share a common partial
sequence.

We will now compare the cost of bounding sequences with single-sequence
algorithms to the cost with BBK∗. Consider an n-residue protein design: we



are given an initial partial sequence s′, which fixes amino acid identity (but
not the rotamer) for a residues, and u residues do not have a fixed amino acid
identity (a + u = n). If the design problem allows at most t amino acids per
unassigned (u) residue and at most q rotamers for any amino acid, there are tu

sequences containing s′, and qa partial conformations defined by s′. A com-
plete sequence would still have qn conformations, and computing the energy
of a conformation takes O(n2) time using a pairwise energy function. Thus, a
single-sequence algorithm would spend O(tuqnn2) worst-case time individu-
ally computing the K∗ scores of all tu sequences. In contrast, the cost of an
MS bound isO(qa(a2+q2t2un)), which includesO(qaa2) time to compute the
pairwise energy of the a assigned residues of all qa partial conformations, and
O(qa+2t2un) time to compute a bound on the energy of each partial conforma-
tion. By reducing two exponentials from tu to t2, and from qn to qa+2, BBK∗

computes an MS bound in time sublinear in the number (tu) of sequences. The
cost to compute a single, provable MS bound (that holds for all tu sequences)
is therefore significantly smaller than the cost to compute tu single-sequence
bounds. Furthermore, these MS bounds are used to prune partial sequences
containing combinations of mutations: for a pruned partial sequence s′, all tu

sequences containing s′ are provably eliminated from search without any addi-
tional computation. That is, BBK∗ provably, combinatorially prunes the search
space. Finally, MS bounds are in many cases inexpensive to compute when
compared to the O(qnn2) complexity of computing an SS-ε bound for a single-
sequence. Since there are qa partial conformation energy bounds to compute, the
cost of an MS bound increases exponentially as a increases. Obviously, when
a � n, qa+2 � qn. This is very advantageous for A∗ search, because a is ini-
tially very small: when BBK∗ begins search, a = 1, and increases one at a time.
Furthermore, a+u = n, and a never exceeds n. Thus in many cases a� n, and
MS bound costs ofO(qa+2t2un) are significantly smaller than the SS-ε costs of
O(qnn2) for a single sequence. Use of MS bounds enables BBK∗ to efficiently
bound and prune sequences that would otherwise require O(qnn2) time each to
evaluate.

The algorithmic advances that make MS bounds possible are new bounds
on partial and full sequences. We denote the design states unbound protein, un-
bound ligand, and bound complex as P , L, and PL respectively. The following
definitions of these new bounds are sufficient for the theorems provided in the
main paper – the precise definitions involve some subtleties, which are deferred
to Appendix A of the SI [36]. Given a sequence s and a state X ∈ {P,L, PL},
the function LX (s) is a provable lower bound of the partition function for s in
state X , and UX (s) is a provable upper bound on the partition function for s in
stateX . For a partial sequence s′, LX (s

′) and UX (s
′) are, respectively, partition



Fig. 2. BBK∗ pruning efficiently explores the sequence space. An example design of residues
192 and 194 of the fourth fibronectin F1 module, and residues 649 and 651 of a fragment S. au-
reus fibronectin binding protein A 5 is shown (Fig. 1, PDB Id: 2RL0). As BBK∗ searches the
sequence space (tree above) its multi-sequence bounds provably prune sub-trees from the se-
quence space. All sequences containing R194/I649 are pruned (red crosses) after computing
exactly one multi-sequence bound: the bound on the partial sequence R194/I649, which is an
upper bound for all sequences containing R194/I649. Sequences containing M192/C194/I649 are
pruned (red crosses) after computing only the multi-sequence bound for the partial sequence
M192/C194/I649. All pruned sequences and partial sequences, shown as empty gray circles,
have no additional computation performed. Even though single-sequence bounds are initiated
for both I192/C194/I649/E651 and I192/C194/I649/D651, the latter is pruned early, after com-
puting a mere δ-approximation bound (orange leaf node), which is cheaper, and not as tight as
an ε-approximate bound. A provable ε-approximation bound (green leaf node) is computed for
only the optimal sequence, I192/C194/I649/E651. In contrast, single-sequence methods compute
separate ε-approximate bounds (which are expensive) for all 8 possible sequences, shown as leaf
nodes in the tree.

function lower and upper bounds for the combinatorial number of sequences
containing s′. These lower- and upper-bounding functions are combined into an
upper-bounding function K+

a (s′) on the partition function ratio of s′.

Definition 1. Let s be a sequence. K+
a (s) is defined as follows:

K+
a (s) =

UPL(s)

LP (s)LL(s)
. (3)

The following theorem establishes the relationship between the partition func-
tion ratio of a partial sequence and the partition function ratio of any sequence
containing the partial sequence:

Theorem 1. Let s be a partial or full sequence. For any partial sequence s′ ⊂ s,
K+

a (s′) bounds K+
a (s) from above:

K+
a (s′) ≥ K+

a (s) ≥ ZPL(s)

ZP (s)ZL(s)
= K∗(s). (4)



A proof is provided in Appendix A.3 of the SI [36]. Theorem 1 shows that the
bounds used by BBK∗ are admissible. That is, they never underestimate the K∗

ratio of any partial sequence. Thus, BBK∗ uses K+
a (s′) as the optimistic bound-

ing function forA∗ search. Previously,A∗ search has been used to provably enu-
merate conformations within some energy window Ew of the GMEC [28] and
to provably approximate the partition function of single sequences [5,15,32,42].
Since Eq. (4) defines an admissible bound over sequences, all of the prov-
able guarantees of A∗ apply to BBK∗. With these guarantees, BBK∗ provably
searches over sequences rather than conformations, and is guaranteed to return
a gap-free list of sequences in order of decreasing binding affinity.

3.1 Algorithm Overview

BBK∗ bounds all possible sequences either with the MS bounds described in
Sec. 3, or by computing a single-sequence bound as described in [13, 32, 42].
In brief, to bound a single sequence, BBK∗ computes a gap-free list of con-
formations whose statistical mechanical energies (Eq. 1) are used to bound
the K∗ ratio. The algorithm reports an error bound δ such that the computed
bound is guaranteed to be no more than a (1 + δ) factor greater than the true
K∗ ratio. We will refer to these single-sequence, δ-approximate bounds [15,
16] as SS-δ bounds. As the gap-free list of conformations used for an SS-δ
bound grows in size, the computed single-sequence bound becomes tighter (δ
decreases). Eventually, δ ≤ ε, and the single-sequence bound becomes a prov-
able ε-approximation, which we will refer to as an SS-ε bound. We will refer
to an SS-δ bound constructed this way as a running bound, which BBK∗ incre-
mentally tightens as it enumerates additional conformations [15].

BBK∗ maintains a max heap whose node values correspond to either full or
partial sequences and whose node keys are an upper bound on all K∗ scores
(Eq. 2) in the sequence space represented by the node. The heap is initialized
with a node representing the entire sequence space. BBK∗ then repeatedly re-
moves the max node x of the queue, and performs one the following operations:
1. Branch. If x contains a partial sequence s′, then s′ is expanded. Expansion

creates t new child nodes by selecting an unassigned residue r in s′, and
creating a new child node for each allowed amino acid a at r. Each child
node contains s′ plus the additional mutation of a assigned at r. These nodes
are bounded with MS bounds or SS-δ bounds, and reinserted into the heap.

2. Update. If x contains a complete sequence s, whose bound is an SS-δ bound,
then BBK∗ enumerates m additional conformations (m = 8 in our study),
tightening the SS-δ bound. x is reinserted into the heap, with the updated
SS-δ bound as its key. Computing this tighter SS-δ bound is important for
pruning sequences, as shown by our computational experiments in Sec. 4.2.



3. Return. If node x contains a full sequence, whose bound is an SS-ε bound,
then the sequence in x has the best K∗ score of all unenumerated sequences
(as with A∗, all better sequences are guaranteed to have already been enu-
merated). The sequence of x is returned.
BBK∗ terminates when it has enumerated the top k sequences (by SS-ε

bound), where k is a user-specified number. A detailed description of the al-
gorithm is provided in Appendix A.8 of the SI [36].

4 Computational Experiments

We implemented BBK∗ in our laboratory’s open source OSPREY [11] protein
design package and compared our algorithm to the previous state-of-the-art
single-sequence iMinDEE/A∗/K∗ algorithm [15, 32, 42]. We computed the five
best binding sequences using both BBK∗ and iMinDEE/A∗/K∗ for 204 differ-
ent protein design problems from 51 different protein-ligand complexes. For
each protein-ligand interface, we created four design problems spanning the
wild-type sequence and all sets of single, double, triple, and quadruple mutants,
respectively. In each design problem, we modeled either 8 or 9 residues at the
protein-ligand interface as mutable and flexible. Each mutable residue was al-
lowed to assume its wild-type identity or mutate to 13-19 other amino acids.
The size of the resulting design problems ranged from 10 to 2.6 × 106 se-
quences and 105 to 1011 conformations (over all sequences). In all cases, we
modeled continuous side-chain flexibility using continuous rotamers [10, 43].
As in [10, 15], rotamers from the Penultimate Rotamer Library [33] were al-
lowed to minimize to any conformation within 9◦ of their modal χ-angles. For
all design problems, we performed minimized dead-end elimination pruning
(minDEE) [15], followed by either iMinDEE/A∗/K∗ or BBK∗. The initial prun-
ing window [10] was 0.1 kcal/mol, and the SS-ε bound accuracy was 0.683
(details are provided in Appendix A.9 of the SI [36]). Each design either prov-
ably returned the optimal sequences or was terminated after 30 days. A detailed
description of the 51 protein-ligand systems in our experiments, the 204 pro-
tein design problems based on these systems, and our experimental protocol is
provided in Appendix C.1 of the SI [36].

4.1 Performance Comparison

As the size of the sequence space increases, so does the efficiency of BBK∗

over iMinDEE/A∗/K∗ (Fig. 3), demonstrating that the complexity of BBK∗ is in
practice sublinear in the number of sequences. We first measured the efficiency



Fig. 3. BBK∗ is up to five orders of magnitude more efficient than iMinDEE/A∗/K∗. BBK∗

completed all 204 designs within a 30 day limit, while iMinDEE/A∗/K∗ completed only 107. (A)
The number of SS-ε bounds performed vs. the number of sequences in the design space. Results
are shown for computing only the the best sequence (blue) and computing the best five sequences
(orange). Single-sequence algorithms, including the best previous algorithm iMinDEE/A∗/K∗,
must compute binding affinity for all possible sequences (green curve). BBK∗ required up to
6×105-fold fewer SS-ε bounds to find the best sequences. (B) The number of energy-minimized
conformations by BBK∗ and iMinDEE/A∗/K∗ vs. the number of sequences in the design space.
iMinDEE/A∗/K∗ completed only 107 of 204 designs (left of the vertical line) before the 30-day
limit. For these designs, BBK∗ was up to 1700-fold more efficient. (C) BBK∗ and iMinDEE/A∗/-
K∗ running times vs. the number of sequences in the design space. For the 107 designs completed
by iMinDEE/A∗/K∗ within 30 days (left of the vertical line), BBK∗ was up to 800-fold more
efficient than iMinDEE/A∗/K∗.

of BBK∗ using the number of SS-ε bounds computed. Next, we measured ef-
ficiency using the number of conformation energy minimizations performed.
Last, we compared the running times of BBK∗ to those of iMinDEE/A∗/K∗.

We divide the design problem sizes into three categories: the smallest prob-
lems have between 10 and 102 sequences; medium-sized problems contain be-
tween 102 and 104 sequences; and the largest problems contain between 104 and
107 sequences. After 30 days, BBK∗ completed all 204 designs, but iMinDEE/-
A∗/K∗ completed only 107 of 204 designs: all 39 of the smallest designs, 54 of
63 medium-sized designs, and only 14 of the 111 largest designs. We now dis-
cuss results for the 107 designs completed by iMinDEE/A∗/K∗. Because iMin-
DEE/A∗/K∗ computes individual sequence binding energies as SS-ε bounds, we
first measured the efficiency of BBK∗ using the number of SS-ε bounds com-
puted (Fig. 3(A)). For small, medium, and large designs, respectively, BBK∗ was
on average 17-fold, 162-fold, and 2568-fold more efficient than iMinDEE/A∗/-
K∗. Next, we measured efficiency using the number of conformation energy
minimizations performed (Fig. 3(B)). Here, BBK∗ minimized, on average, 10-
fold, 43-fold, and 113-fold fewer conformations for small, medium, and large-
sized designs, respectively, compared to iMinDEE/A∗/K∗. Last, we compared
empirical running times for both methods (Fig. 3(C)). On average, BBK∗ was



36-fold, 67-fold, and 97-fold faster than iMinDEE/A∗/K∗ for small, medium,
and large-sized designs, respectively.

Based on the 107 designs that iMinDEE/A∗/K∗ was able to complete within
30 days, we conclude that BBK∗ provides a combinatorial speedup over iMin-
DEE/A∗/K∗. Crucially, BBK∗ is not only more efficient, but also retains the
provability guarantees and biophysical modeling improvements (viz. ensemble-
based design, continuous flexibility) employed by single-sequence iMinDEE/-
A∗/K∗. In one large design (2.6 × 106 sequences), involving a camelid single-
domain VHH antibody fragment in complex with RNase A (PDB id: 2P49),
BBK∗ pruned more than 99.9% of sequences to provably find the best 5 se-
quences. Therefore, BBK∗ can design over similarly sized sequence spaces to
high throughput experimental screening methods such as phage display [2, 38].

4.2 Sequence Space Pruning

Fig. 4. BBK∗ used MS and SS-δ bounds to prune up to 99.99999% of the sequence space.
(A) Sequence space reduction due to MS pruning. The fraction of un-pruned sequences (gray)
normalized to the total number of sequences (green). BBK∗ used MS bounds to provably prune
up to 99.9% of the sequence space. BBK∗ does not compute SS-ε bounds for pruned sequences.
(B) The fraction of BBK∗ SS-ε bounds (blue for the best sequence and orange for the best 5
sequences) normalized to the number of sequences not pruned by MS bound pruning (gray). To
compute the best sequences, BBK∗ calculated SS-ε bounds for as few as 0.01% of the un-pruned
sequences. The remaining 99.99% of these sequences were pruned at mere SS-δ accuracy.

BBK∗ owes its efficiency to two complementary modes of sequence pruning:
MS bound pruning and SS-δ bound pruning. Fig. 4(A) illustrates the efficiency
gains in BBK∗ due to MS bound pruning. In small, medium, and large design
problems, respectively, BBK∗ pruned up to 90%, 99% and 99.9% of the se-
quence design space using MS bound pruning. These data show that the amount



of MS pruning increased significantly with the size of the design space. Fig. 4(B)
illustrates the efficiency gains in BBK∗ due to SS-δ bound pruning. In small,
medium, and large design problems, respectively, SS-δ pruning eliminates up
to 98%, 99.9% and 99.99% of the sequences not pruned by MS pruning. These
data show that the amount of SS-δ pruning increased with the size of the design
problem. Further details are provided in Appendices A.10 and B.1of the SI [36].

Importantly, MS bound pruning and SS-δ bound pruning have multiplicative
synergy, producing a combined pruning effect of up to 99.99999% of the orig-
inal sequence space while provably finding the five best-binding sequences. In
one example, we re-designed the protein-protein interface of a camelid affinity-
matured single-domain VHH antibody fragment (PDB id: 2P4A). The sequence
space, 2.6× 106 sequences, consisted of all quadruple mutants in the 9-residue
protein-protein interface. BBK∗ pruned all but 2078 sequences using MS prun-
ing and then pruned 2071 sequences from these remaining 2078 sequences using
SS-δ bound pruning. These data show how BBK∗ prunes a combinatorial num-
ber of sequences from the design space, producing dramatic efficiency gains
over single-sequence methods. See SI [36] Section 5.2 for details.

4.3 Design with Coupled Continuous Side-Chain and Backbone
Flexibility

Fig. 5. BBK∗ efficiently handles coupled continuous side-chain and local backbone flexibil-
ity. Selected residues from ensembles, computed by BBK∗, of human fibronectin F1 modules 4-5
(magenta) in complex with a fragment of S. aureus fibronectin binding protein A 5 (FNBPA-5,
PDB id: 2RL0, [34]). The design space consisted of the wild-type sequence and either 15 or
25 single amino-acid mutants. (A) Ensemble of the wild-type sequence based on the original
crystal structure. The design used a fixed FNBPA-5 backbone (green) and continuous side-chain
flexibility. (B) Ensemble of the wild-type sequence using two backbones: the original FNBPA-5
backbone (green) and a second backbone (PDB id: 2RKY, cyan) with RMSD 1.3 Å from the
original (found using the MASTER program [58]). The sequence rankings (by K∗ score, Eq. 2)
from the fixed and flexible backbone models had Spearman correlation coefficients of ρ=0.53
and ρ=0.82 in the 15 and 25 mutant designs, respectively. This shows that the flexible backbone
model favors binding in very different sequences than the fixed backbone model does.



To determine whether design with a fixed backbone and continuous rotamers
predicts tight binding in the same sequences as does a model with both local
backbone flexibility and continuous rotamers, we used BBK∗ to redesign the
Human Fibronectin F1:Staphylococcus aureus FNBPA-5 interface [34] (PDB
id: 2RL0) for binding affinity. As we will discuss below, the flexible back-
bone model favors binding in different sequences than the fixed backbone model
does. Details of our experimental protocol are provided in Appendix C.3 of the
SI [36].

In the first experiment, we re-designed the Fibronectin F1:FNBPA-5 inter-
face for binding affinity over the wild-type sequence and 15 single amino-acid
polymorphisms. Our results showed that using the flexible backbone model ver-
sus the fixed backbone model increased the size of the design conformation
space by 1417-fold but only increased the running time by 4-fold in BBK∗.
By comparison, iMinDEE/A∗/K∗ required 48-fold more time than BBK∗ to
complete the flexible backbone design. Our results also showed that the BBK∗

sequence rankings between the two input models had a Spearman correlation
coefficient of only ρ=0.53. Thus, the flexible backbone model favors binding
in different sequences than the fixed backbone model does. For instance, the
FNBPA-5 D650E mutant is predicted to bind less tightly than the wild-type in
the fixed backbone model (Fig. 5(A)) but more tightly than WT in the flexible
model (Fig. 5(B)). In our second experiment, the sequence design space con-
sisted of the wild-type sequence and 25 single amino-acid polymorphisms. The
BBK∗ sequence rankings produced by the two input models had a Spearman cor-
relation coefficient of ρ=0.82 (additional details are provided in Section B.2 of
the SI [36]). Relative to the fixed backbone model, the flexible backbone model
increased the size of the design conformation space by 8447-fold but only in-
creased the running time by only 1.7-fold in BBK∗. iMinDEE/A∗/K∗ required
89-fold more time than BBK∗ to complete the design using the flexible backbone
model.

It is important to note that these experiments are only possible with prov-
able algorithms. Without the provable guarantees of BBK∗, it would be difficult
and perhaps unsound to compare the results of computational protein design
with and without coupled continuous side-chain and backbone flexibility, since
difference induced by the fixed backbone and rotamer model cannot be decon-
volved from differences stemming from undersampling or inadequate stochastic
optimization. Thus, BBK∗ provides provable methods to analyze the difference
in predicted sequences between different models of side-chain and backbone
flexibility.



5 Conclusion

BBK∗ fills an important lacuna in protein design: we presented a novel algo-
rithm that can search not over the energies of single-conformations, but instead
over the binding affinity of sequences. BBK∗ is, to our knowledge, the first prov-
able, ensemble-based algorithm to search over binding affinity and run in time
sublinear in the number of sequences. Previously, protein designers either em-
ployed heuristic algorithms to compute locally optimal sequences, or computed
provably accurate approximations of binding affinity for each sequence individ-
ually. BBK∗ not only computes the globally optimal sequences, it does so while
combinatorially pruning the sequence space. Our experiments show that BBK∗

can search over sequence spaces of up to 2.6×106 sequences, a capacity compa-
rable to high-throughput experimental screening methods such as phage display.
Thus, BBK∗ liberates binding affinity-based protein design from the efficiency
barrier imposed by exhaustive search. Ensemble-based design for affinity over
large sequence spaces was previously possible only with heuristic algorithms
(with no guarantees), or using high-throughput wet-bench experiments. BBK∗

enables computational protein design by providing new Ka algorithms, with
provable guarantees, for these large-scale protein designs.

Acknowledgments. We thank Drs. Mark Hallen and Pablo Gainza for helpful
discussions and for providing useful protein-ligand binding problems; Dr. Jef-
frey Martin for software optimizations; Hunter Nisonoff, Anna Lowegard and
all members of the Donald lab for helpful discussions; and the NSF (GRFP
DGF 1106401 to AAO) and the NIH (R01-GM78031 to BRD, R01-HL119648
to VGF) for funding.

References

1. F. E. Boas, P. B. Harbury. Curr Opin Struct Biol 17, 199 (2007).
2. S. Carmen, L. Jermutus. Brief Funct Genomic Proteomic 1, 189 (2002).
3. C.-Y. Chen et al. Proc Natl Acad Sci U S A 106, 3764 (2009).
4. J. Desmet et al. Nature 356, 539 (1992).
5. B. R. Donald. Algorithms in Structural Molecular Biology (MIT Press, Cambridge, MA,

2011).
6. S. J. Fleishman et al. Protein Sci 20, 753 (2011).
7. K. M. Frey et al. Proc Natl Acad Sci U S A 107, 13707 (2010).
8. M. Fromer, C. Yanover. Bioinformatics 24, i214 (2008).
9. P. Gainza, H. M. Nisonoff, B. R. Donald. Curr Opin Struct Biol 39, 16 (2016).

10. P. Gainza, K. E. Roberts, B. R. Donald. PLoS Comput Biol 8, e1002335 (2012).
11. P. Gainza et al. Methods Enzymol 523, 87 (2013) (Program, user manual, and source code

are available at www.cs.duke.edu/donaldlab/software.php ).
12. I. Georgiev et al. Retrovirology 9 (2012).
13. I. Georgiev, B. R. Donald. Bioinformatics 23, i185 (2007).



14. I. Georgiev, R. H. Lilien, B. R. Donald. Bioinformatics 22, e174 (2006).
15. I. Georgiev, R. H. Lilien, B. R. Donald. J Comput Chem 29, 1527 (2008).
16. I. S. Georgiev. Novel algorithms for computational protein design, with applications to

enzyme redesign and small-molecule inhibitor design. Ph.D. thesis. Duke University.
http://hdl.handle.net/10161/1113 (2009).

17. I. S. Georgiev et al. J Immunol 192, 1100 (2014).
18. M. K. Gilson et al. Biophys J 72, 1047 (1997).
19. M. J. Gorczynski et al. Chem Biol 14, 1186 (2007).
20. M. A. Hallen, B. R. Donald. J Comput Biol 23, 311 (2016).
21. M. A. Hallen, P. Gainza, B. R. Donald. J Chem Theory Comput 11, 2292 (2015).
22. M. A. Hallen, J. D. Jou, B. R. Donald. J Comput Biol Epub ahead of print (2016).
23. M. A. Hallen, D. A. Keedy, B. R. Donald. Proteins 81, 18 (2013).
24. P. Hart, N. N.J., B. Raphael. IEEE Trans on SSC 4, 100 (1968).
25. J. D. Jou et al. J Comput Biol 23, 413 (2016).
26. C. L. Kingsford, B. Chazelle, M. Singh. Bioinformatics 21, 1028 (2005). PMID: 15546935.
27. B. Kuhlman, D. Baker. Proc Natl Acad Sci U S A 97, 10383 (2000).
28. A. R. Leach, A. P. Lemon. Proteins 33, 227 (1998).
29. A. Leaver-Fay et al. Methods Enzymol 487, 545 (2011).
30. C. Lee, M. Levitt. Nature 352, 448 (1991).
31. J. Leech, J. F. Prins, J. Hermans. Computational Science and Engineering 3, 38 (1996).
32. R. H. Lilien et al. J Comput Biol 12, 740 (2005).
33. S. C. Lovell et al. Proteins 40, 389 (2000).
34. S. K. Lower et al. Proc Natl Acad Sci U S A 108, 18372 (2011).
35. H. Nisonoff. B.S. Thesis. Department of Mathematics, Duke University.

http://hdl.handle.net/10161/9746 (2015).
36. A. A. Ojewole et al. Supplementary information: BBK* (Branch and Bound over K*): A

provable and efficient ensemble-based algorithm to optimize stability and binding affin-
ity over large sequence spaces for sparse approximations of computational protein design,
(2015) (Available at http://www.cs.duke.edu/donaldlab/Supplementary/recomb17/bbkstar ).

37. A. Ojewole et al. Methods Mol. Biol. 1529, 291 (2017). PMID: 27914058.
38. G. Pál et al. J Biol Chem 281, 22378 (2006).
39. J. Peng et al. arXiv:1504.05467 [q-bio.BM] (2015).
40. N. A. Pierce, E. Winfree. Protein Eng 15, 779 (2002).
41. S. M. Reeve et al. Proc Natl Acad Sci U S A 112, 749 (2015).
42. K. E. Roberts et al. PLoS Comput Biol 8, e1002477 (2012).
43. K. E. Roberts, B. R. Donald. Proteins 83, 1151 (2015).
44. K. E. Roberts et al. Proteins 83, 1859 (2015).
45. R. S. Rudicell et al. J Virol 88, 12669 (2014).
46. D. Sciretti et al. Proteins 74, 176 (2009).
47. N. W. Silver et al. J Chem Theory Comput 9, 5098 (2013).
48. D. Simoncini et al. J Chem Theory Comput 11, 5980 (2015).
49. B. W. Stevens et al. Biochemistry 45, 15495 (2006).
50. S. Traoré et al. Bioinformatics 29, 2129 (2013).
51. S. Traoré et al. J Comput Chem 37, 1048 (2016).
52. L. G. Valiant. Theoretical computer science 8, 189 (1979).
53. C. Viricel et al. The 22nd International Conference on Principles and Practice of Constraint

Programming (2016).
54. M. J. Wainwright, T. S. Jaakkola, A. S. Willsky. CoRR abs/1301.0610 (2013).
55. J. Xu. 9th Annual International Conference, RECOMB 3500, 423 (2005).
56. J. Xu, B. Berger. The Journal of the ACM 53, 533 (2006).
57. F. Zheng et al. J Am Chem Soc 130, 12148 (2008).
58. J. Zhou, G. Grigoryan. Protein Sci 24, 508 (2015).


