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Abstract. Residual dipolar coupling (RDC) and residual chemical shift
anisotropy (RCSA) provide orientational restraints on internuclear vec-
tors and the principal axes of chemical shift anisotropy (CSA) tensors,
respectively. Mathematically, while an RDC represents a single sphero-
conic, an RCSA can be interpreted as a linear combination of two sphero-
conics. Since RDCs and RCSAs are described by a molecular alignment
tensor, they contain inherent structural ambiguity due to the symmetry
of the alignment tensor and the symmetry of the molecular fragment,
which often leads to more than one orientation and conformation for
the fragment consistent with the measured RDCs and RCSAs. While
the orientational multiplicities have been long studied for RDCs, struc-
tural ambiguities arising from RCSAs have not been investigated. In
this paper, we give exact and tight bounds on the number of peptide
plane orientations consistent with multiple RDCs and/or RCSAs mea-
sured in one alignment medium. We prove that at most 16 orientations
are possible for a peptide plane, which can be computed in closed form
by solving a merely quadratic equation, and applying symmetry oper-
ations. Furthermore, we show that RCSAs can be used in the initial
stages of structure determination to obtain highly accurate protein back-
bone global folds. We exploit the mathematical interplay between sphero-
conics derived from RCSA and RDC, and protein kinematics, to derive
quartic equations, which can be solved in closed-form to compute the
protein backbone dihedral angles (φ, ψ). Building upon this, we designed
a novel, sparse-data, polynomial-time divide-and-conquer algorithm to
compute protein backbone conformations. Results on experimental NMR
data for the protein human ubiquitin demonstrate that our algorithm
computes backbone conformations with high accuracy from 13C′-RCSA
or 15N-RCSA, and N-HN RDC data. We show that the structural in-
formation present in 13C′-RCSA and 15N-RCSA can be extracted an-
alytically, and used in a rigorous algorithmic framework to compute a
high-quality protein backbone global fold, from a limited amount of NMR
data. This will benefit automated NOE assignment and high-resolution
protein backbone structure determination from sparse NMR data.
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1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful ex-
perimental techniques for the study of macromolecular structure and dynamics,
particularly for proteins in solution. NMR complements X-ray crystallography
in that it can obtain structural information for proteins that are hard to crystal-
lize, intrinsically disordered proteins [18,38], and denatured proteins [36]. NMR
has also emerged as a major tool to probe protein-ligand interactions [20] under
near physiological conditions, as well as to investigate invisible excited states in
proteins and extract information on these minor conformers [3, 4].

The NMR technique is based on the sensitivity of magnetic properties of
the nuclei to its local chemical and electronic environment in the presence of a
strong and static external magnetic field of the spectrometer. The observable for
a nucleus, called its chemical shift, arises from the nuclear shielding effect caused
by the local magnetic field, induced by the circulation of electrons surrounding
the nucleus. This induced field can be described by a second-rank chemical shift
(or shielding) anisotropy (CSA) tensor, which can be rewritten to correspond to
the isotropic, anisotropic antisymmetric, and anisotropic symmetric parts.

In solution, due to isotropic molecular tumbling, the anisotropic parts of the
CSA tensor average out to zero due to rotational diffusion, and only the remain-
ing isotropic chemical shift, δiso, is observed. While isotropic chemical shifts play
an increasingly important role in NMR structure elucidation and refinement [9,
45,59], and dynamics [1], our understanding of the relationship between structure
and chemical shifts is still far from complete, especially in the context of pro-
teins [68] and other macromolecules. The antisymmetric part of the CSA tensor
often has a negligible effect on the relaxation rates, and hence can be ignored. The
symmetric part of the CSA tensor is a traceless, second-rank tensor, usually rep-
resented by its three eigenvalues in the principal order frame and the orientations
of its three principal axes (eigenvectors) with respect to the molecular frame.

Accurate knowledge of CSA tensors is essential to the quantitative determi-
nation and interpretation of dynamics, relaxation interference [33, 46], residual
chemical shift anisotropy (RCSA) [12,39,63], and NMR structure determination
and refinement [15, 26, 27, 61]. In solid-state NMR, CSA tensors can be deter-
mined from powder patterns [32], or magic-angle spinning (MAS) spectra [60].
In solution NMR, the CSA tensors can be determined from relaxation and CSA-
dipolar cross-correlation experiments [30, 62, 63], or from offsets in resonance
peaks upon partial alignment [7]. The presence of an alignment medium intro-
duces partial alignment in the molecules. Residual dipolar coupling (RDC) [34]
can easily be extracted, often with high-precision, as the difference between the
line-splittings in weakly aligned and isotropic buffer solutions. The small differ-
ence in chemical shifts observed under partially aligned conditions and isotropic
conditions gives rise to the RCSA effect [39]. Techniques to measure RCSA
include temperature-dependent phase transition of certain liquid crystals [12],
varying concentration of the aligning medium [6], utilizing MAS to eliminate the
effects of protein alignment relative to the magnetic field [21], and the recently
introduced two-stage NMR tube method by Prestegard and coworkers [28].
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Similar to RDC, RCSA contains rich and orientationally sensitive structural
information [46] that complements other types of structural restraints such as
the nuclear Overhauser effect (NOE) distance restraints and scalar couplings.
Since amide nitrogen RCSA (15N-RCSA) and carbonyl RCSA (13C′-RCSA) can
be measured to high precision [12, 63], they have been used as structural re-
straints for protein structure validation [14] and refinement [10,26,27,53] during
the final stages of traditional protein structure determination [5, 42]. However,
to our knowledge, RCSAs have never been used in the initial stages of structure
computation to compute the backbone global fold of a protein. Methods that
primarily use RDCs in the initial stages of structure computation [16,19,47,65]
have been shown to have many advantages over traditional NOE-based struc-
ture determination protocols. Recently, in [35, 45], Baker and Bax and cowork-
ers have developed protocols within the Rosetta [25] protein structure model-
ing framework, that use only backbone chemical shifts, RDCs, and amide pro-
ton NOE distances to compute high-quality protein backbone conformations.
However, these approaches do not use structural restraints from RCSA data.
Further, most of these approaches use stochastic search, and therefore, lack
any algorithmic guarantee on the quality of the solution or running time.

In recent work from our laboratory [17, 51, 52, 56, 58, 64], polynomial-time
algorithms have been proposed for high-resolution backbone global fold deter-
mination from a minimal amount of RDC data. This framework is called rdc-
analytic. The core of the rdc-analytic suite is based on representing RDC
and protein kinematics in algebraic form, and solving them analytically to obtain
closed-form solutions for the backbone dihedrals and peptide plane orientations,
in a divide-and-conquer framework to compute the global fold. These algorithms
have been used in [57, 65, 66] to develop new algorithms for NOE assignment,
which led to the development of a new framework [65] for high-resolution pro-
tein structure determination, which was used prospectively to solve the solu-
tion structure of the FF Domain 2 of human transcription elongation factor
CA150 (FF2) (PDB id: 2KIQ). Recently, we have developed a novel algorithm,
pool [51, 52], within the rdc-analytic framework, to determine protein loop
conformations from a minimal amount of RDC data. However, rdc-analytic
did not exploit orientational restraints from RCSA data.

In this work, we show that orientational restraints from 13C′-RCSAs or 15N-
RCSAs can be used in combination with N-HN RDCs in an analytic, system-
atic search-based, divide-and-conquer framework to determine individual peptide
plane orientations and protein backbone conformations. Our new algorithm is a
part of the rdc-analytic framework, and is called rdc-csa-analytic. Two
demonstrations of applying rdc-csa-analytic, (1) using 13C′-RCSA and N-HN

RDC, and (2) using 15N-RCSA and N-HN RDC, to compute the global fold of
ubiquitin, and promising results from the application of our algorithm on real
biological NMR data, are presented below.

Furthermore, we pursued the fundamental question of determining the pep-
tide plane orientations when 3 measurements are used, each of which is either
an RCSA on a nucleus or an RDC on an internuclear vector on the peptide
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plane. This is important, because for perdeuterated proteins, RDCs are usually
measured on N-HN, Cα-C′, and C′-N coplanar vectors. Further, 15N-RCSA and
13C′-RCSA can be interpreted with respect to the CSA tensor components on
the peptide plane. Previously, Brüschweiler and coworkers [23] showed that it is
possible to derive analytic expressions, containing transcendental functions, for
the 16 possible peptide plane orientations using only RDCs. However, they only
showed a lower bound on the number of solutions. In addition, their work did not
consider orientational restraints from RCSAs. In this work, we derive closed-form
analytic expressions for the peptide plane orientations from RCSAs and RDCs
on coplanar vectors measured in one alignment medium. We prove that at most
16 orientations are possible for the peptide plane, which can be computed in
closed form by solving a quadratic equation, and then applying symmetry opera-
tions. This is remarkable because for decades, all previous approaches required,
at worst, solving equations involving transcendental functions, or at best, solving
polynomial equations of degree 4 or higher. We give a Θ(1)-time deterministic
algorithm, 3planar, to compute all possible peptide plane orientations.

2 Theory and Methods

2.1 Residual Dipolar Coupling

The residual dipolar coupling r between two spin- 12 nuclei a and b, described by
a unit internuclear vector v, due to anisotropic distribution of orientations in
the presence of an alignment medium, relative to a strong static magnetic field
direction B is given by [16,48,49]

r = Dmaxv
TSv. (1)

Here the dipolar interaction constant Dmax depends on the gyromagnetic ratios
of the nuclei a and b, and the vibrational ensemble-averaged inverse cube of the
distance between them. S is the Saupe order matrix [40], or alignment tensor
that specifies the ensemble-averaged anisotropic orientation of the protein in
the laboratory frame. S is a 3 × 3 symmetric, traceless, rank 2 tensor with
five independent elements [34, 48, 49]. Letting Dmax = 1 (i.e., scaling the RDCs
appropriately), and considering a global coordinate frame that diagonalizes S,
often called the principal order frame (POF), Eq. (1) can be written as

r = Sxxx
2 + Syyy

2 + Szzz
2, (2)

where Sxx, Syy and Szz are the three diagonal elements of a diagonalized align-
ment tensor S, and x, y and z are, respectively, the x, y and z components of
the unit vector v in a POF that diagonalizes S. Note that Sxx + Syy + Szz = 0
because S is traceless. Since v is a unit vector, an RDC constrains the cor-
responding internuclear vector v to lie on the intersection of a concentric unit
sphere and a quadric (Eq. (2)). This gives a pair of closed curves inscribed on the
unit sphere that are diametrically opposite to each other (see Figure 1 (a, b)).
These curves are known as sphero-conics or sphero-quartics [8,37]. Since |v| = 1,
Eq. (2) can be rewritten in the following form:

ax2 + by2 = c, (3)
where a = Sxx − Szz, b = Syy − Szz, and c = r − Szz. Henceforth, we refer
to Eq. (3) as the reduced RDC equation. For further background on RDCs and
RDC-based structure determination, the reader is referred to [16,17,34,48,49].
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                                      v1 = δxx,
  v2 = δyy   of 13C-CSA tensor. 

v3 = δxx,  v4 = δzz   of 15N-CSA tensor.    v5 = δzz,  v6 = δyy   of 1H-CSA tensor.  
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Fig. 1: Left Panel. (a) The internuclear vector v (green arrow) is constrained to lie
on one of the two pringle-shaped RDC sphero-conic curves (brown) lying on a unit
sphere. (b) The kinematic circle (blue), of the internuclear vector v (here v

CαHα
),

around the axis v
NCα

, intersects the sphero-conic curves in at most four points (green
dots) leading to a maximum of four possible orientations for v. The case is similar when
φ is solved and a ψ-defining RDC is measured for an internuclear vector v, e.g., v

NHN .

Right Panel. (c) Orientations of the principal components of 13C-, 15N- and 1H-CSA
tensors with respect to the peptide plane are shown in cyan, blue and gray, respectively.
δzz is the most- and δxx is the least-shielded component. For each tensor, one of the
components is approximately perpendicular to the peptide plane; therefore, the other
two components lie on the peptide plane, and are completely defined by the angle Ω.
The values of the angles Ω

C′ , ΩN and ΩH can be set to fixed values [10,12], e.g., 38◦,
19◦ and 8◦ as reported in [12]. (d) The wagon wheel shows the CSA tensor components
on the peptide plane along with the bond vectors drawn using C′ atom as the origin.

2.2 Residual Chemical Shift Anisotropy

For a given nucleus, the difference in chemical shifts between the liquid crystalline
phase (δaniso) and the isotropic phase (δiso) is the RCSA, and is given by [12,
14,39,63]

∆δ = δaniso − δiso =
2

3

∑
i∈{x,y,z}

〈P2(cos θii)〉 δii, (4)

where P2(α) = (3α2 − 1)/2 is the second Legendre polynomial, δxx, δyy and δzz
are the principal components of the CSA tensor, and θxx, θyy and θzz are the re-
spective angles between the principal axes of the traceless, second-rank CSA ten-
sor and the magnetic field direction B. The angle brackets, 〈· · · 〉, denote ensem-
ble averaging. After suitable algebraic manipulations, we can write Eq. (4) as

∆δ = λ1δ
T
xx
Sδxx + λ2δ

T
yy
Sδyy , (5)

where
λ1 =

1

3
(2δxx + δyy) (6)

and
λ2 =

1

3
(2δyy + δxx) (7)

are two constants since δxx and δyy are known experimentally. Eq. (5) therefore
expresses the ∆δ as a linear combination of two virtual RDC sphero-conics on
two unit vectors δxx and δyy that can be realized on the peptide plane. This
derivation applies, mutatis mutandis, to any two choices of unit vectors from{
δ
xx
, δ

yy
, δ

zz

}
. Working in the POF of the molecular alignment tensor, we can

write the above equation as

∆δ = Sxx(λ1x
2
1 + λ2x

2
2) + Syy(λ1y

2
1 + λ2y

2
2) + Szz(λ1z

2
1 + λ2z

2
2), (8)

where the unit vectors δ
xx

= (x1, y1, z1)T and δ
yy

= (x2, y2, z2)T in the POF of
the molecular alignment tensor. Eq. (8) can be simplified to the following form
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Table 1: rdc-csa-analytic uses a φ-defining RDC to compute the backbone dihedral
φ, and a ψ-defining RDC or RCSA to compute the backbone dihedral ψ exactly and
in closed form.

φ-defining RDC Cα-Hα, Cα-C′, Cα-Cβ

ψ-defining RDC/RCSA N-HN, C′-N, C′-HN, 13C′-RCSA, 15N-RCSA, 1H-RCSA

a(λ1x
2
1 + λ2x

2
2) + b(λ1y

2
1 + λ2y

2
2) = c, (9)

where a = Sxx − Szz, b = Syy − Szz, and c = ∆δ− (λ1 + λ2)Szz. Henceforth, we
refer to Eq. (9) as the reduced RCSA equation.

Figure 1 (c, d) shows the local structure of a peptide plane on which the
principal components of 13C-, 15N- and 1H-CSA tensors are realized. δzz and δxx
are respectively the most- and least- shielded CSA tensor components. We denote
13C′-RCSA, 15N-RCSA and 1H-RCSA by ∆δC′ , ∆δN and ∆δH, respectively.

2.3 The rdc-csa-analytic Algorithm

rdc-csa-analytic computes the backbone global fold of proteins using RDC
and RCSA data in one alignment medium. Table 1 describes the RDC and RCSA
types that rdc-csa-analytic uses to compute the backbone dihedrals exactly
and in closed form. A φ-defining RDC is used to compute the backbone dihedral
φ, and a ψ-defining RDC or RCSA is used to compute the backbone dihedral ψ,
in the increasing order of residue number. The input data to rdc-csa-analytic
include: (1) the primary sequence of the protein; (2) any combination of at least
two RDCs or RCSAs per residue measured in one alignment medium; (3) a
sparse set of NOEs; (4) secondary structure element (SSE) boundaries based on
talos [13, 44] dihedral restraints; and (5) the rotamer library [31].

Previously, we have shown that when a φ-defining and a ψ-defining RDC are
available for a residue, the corresponding values for φ and ψ can be computed
by solving quartic equations [51,52,64]. rdc-csa-analytic extends this to the
cases when a ψ-defining RCSA is available in addition to a φ-defining RDC
(see Proposition 1 below), e.g., when Cα-C′ or Cα-Hα RDC, and 13C′-RCSA or
15N-RCSA data is available. However, in solution NMR, 13C′-RCSA and/or 15N-
RCSA can be measured, often with high precision, along with N-HN RDC, for
large and perdeuterated protein systems, for which Cα-Hα RDCs at the chiral
Cα center cannot be measured, and Cα-C′ RDCs measurements are often less
precise. Therefore, it is important to be able to determine the global fold from
these types of measurements. rdc-csa-analytic algorithm specifically provides
a solution to this problem. Here we solve the most general case when two ψ-
defining RCSAs and/or RDCs are available for residues. Further, this includes
the case when (only) two RCSAs per residue are available. It can be shown that
(see the supporting information (SI) Appendix A available online [50]) one
must solve a 32 degree univariate polynomial equation to solve for all possible
(at most 32) (φ, ψ) pairs, which is a difficult computational problem.

However, for a given value of φi, the values of ψi can be computed by solving
a quartic equation (see Proposition 1 below). Here we present a hybrid approach
that employs a systematic search over φ combined with solutions to two quartic
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equations for ψ derived from two ψ-defining RDC/RCSA values r1 and r2, to
compute the backbone dihedrals (φ, ψ) pairs. For each φ, sampled systematically
from the Ramachandran map, let A and B (each of size ≤4) be the sets of all ψ
values computed using r1 and r2, respectively. If A∩B 6= ∅, then for a ψ ∈ A∩B,
the corresponding (φ, ψ) pair is a solution. However, in practice, there are two
issues that need to be addressed. First, due to finite-resolution sampling of φ, and
experimental errors in the RDC and RCSA data, the intersection of sets A and
B can be an empty set, even though there exist ψA ∈ A and ψB ∈ B such that
|ψA − ψB | < δ, for some small delta δ > 0 which depends on the resolution of
sampling of φ. This issue can be addressed by choosing a suitable resolution α for
systematic sampling of φ, and choosing a corresponding small value for δ. Both
α and δ are input parameters to our algorithm. We use α = 0.2◦ and δ = 0.5◦.
We choose a ψ ∈ [ψA, ψB ] when |ψA − ψB | < δ. Further, our choice of ψ does
not increase the RDC and RCSA RMSDs (i.e., the RMS deviation between the
back-computed and experimental values) so much that they exceed user-defined
thresholds; otherwise, the solution is discarded. Second, due to fine sampling of
φ, often multiple pairs of (φ, ψ) cluster in a small region of the Ramachandran
map. We cluster these solutions, and choose a set of representative candidates
so that the complexity of the conformation tree search is not adversely affected.

A description of the core modules of rdc-csa-analytic, and the inner work-
ing details are provided in the SI Appendix B available online [50].

The Analytic Step: Peptide Plane Orientations from N-HN RDC, and
13C-RCSA or 15N-RCSA Measured in One Alignment Medium. To
compute ψi for residue i, any of the 13C′-RCSA, 15N-RCSA or 1H-RCSA can
be used (see Table 1). Here we will use 13C′-RCSA and derive the necessary
mathematical tools for computing the dihedral ψi. Our derivation holds for 15N-
RCSA and 1H-RCSA with minor modifications.

Proposition 1. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, the dihedral φi, and the 13C′-RCSA ∆δC′ for residue i,
there exist at most 4 possible values of the dihedral angle ψi that satisfy ∆δC′ , and
they can be computed exactly and in closed form by solving a quartic equation.

Proof. The derivation below assumes standard protein geometry, which is ex-
ploited in the kinematics [52, 56]. Let the unit vector v0 = (0, 0, 1)T be the N-
HN bond vector of residue i in the local coordinate frame defined on the peptide
plane Pi. Let v

1
= (x1, y1, z1)T and v

2
= (x2, y2, z2)T be the unit vectors defined

with respect to the POF on the peptide plane Pi+1. We can write the forward
kinematics relations between v

0
and v

1
, and between v

0
and v

2
as follows:

v1 = Ri,POF Rl Rz(φi) Rm Rz(ψi) Rr v0 , (10)

v2 = Ri,POF Rl Rz(φi) Rm Rz(ψi) R
′
r v0 . (11)

Here Rl, Rm, Rr and R′r are constant rotation matrices. Ri,POF is rotation matrix
of Pi with respect to the POF. Rz(φi) is the rotation about the z-axis by φi, and
is a constant rotation matrix since φi is known. Rz(ψi) is the rotation about the
z-axis by ψi. Let c = cosψi and s = sinψi. Using this in Eq. (10) and Eq. (11)
and simplifying we obtain
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x1 = A10 +A11c+A12s, x2 = A20 +A21c+A22s, (12)

y1 = B10 +B11c+B12s, y2 = B20 +B21c+B22s, (13)

z1 = C10 + C11c+ C12s, z2 = C20 + C21c+ C22s, (14)

where Aij , Bij , Cij for 1 ≤ i ≤ 2 and 0 ≤ j ≤ 2 are constants. Using Eq. (12) to
Eq. (14) in the reduced RCSA equation (Eq. (9)), and simplifying we obtain

K0 +K1c+K2s+K3cs+K4c
2 +K5s

2 = 0, (15)

where Ki, 0 ≤ i ≤ 5 are constants. Using half-angle substitutions

u = tan(
ψi
2

), c =
1− u2
1 + u2

, and s =
2u

1 + u2
(16)

in Eq. (15) we obtain
L0 + L1u+ L2u

2 + L3u
3 + L4u

4 = 0, (17)

where Li, 0 ≤ i ≤ 4 are constants. Eq. (17) is a quartic equation that can
be solved exactly and in closed form. For each real solution (at most four are
possible), the corresponding ψi value can be computed using Eq. (16). ut
Corollary 1. Given the diagonalized alignment tensor components Sxx and Syy,
the peptide plane Pi, the dihedral φi, and a ψ-defining RDC r for Pi+1, there
exist at most 4 possible values of the dihedral ψi that satisfy r. The possible values
of ψi can be computed exactly and in closed form by solving a quartic equation.

Proof. The proof follows from Proposition 1 by setting λ1 = 1, λ2 = 0 in Eq. (9),
and treating v1 as the vector for which the ψ-defining RDC r is measured. ut

2.4 The 3planar Algorithm

We show that given any combination of three RCSAs and/or RDCs for internu-
clear vectors on a peptide plane (and in general, for any planar structural motif),
there exist at most 16 possible orientations of the peptide plane that satisfy the
three given orientational restraints. We further show that the 16 possible ori-
entations can be computed in closed form by solving a quadratic equation. It
is the only case where we have discovered a quadratic equation-based solution
to constraints involving second-rank tensors, e.g., RDCs and RCSAs; all previ-
ous exact solutions to RCSA and/or RDC equations required solving quartic or
higher degree equations. This we obtained by exploiting the symmetry of the
equations in a novel way. Our main result is stated as the following proposition.

Proposition 2. Given a rhombic alignment tensor, and 3 measurements, each
of which is either an RCSA on a nucleus on the peptide plane P or an RDC
on an internuclear vector on P , there exist at most 16 possible orientations for
P that satisfy the 3 measurements, and these orientations can be written and
solved in closed form by solving a quadratic equation.

Proof. The proof is presented in the SI Appendix C available online [50]. ut
Proposition 2, is incorporated into the 3planar algorithm, which requires

the following as input: (1) the diagonalized alignment tensor components (Syy,
Szz); and (2) three orientational restraints, such as the CSA tensor parameters
along with the RCSA values (δxx, δyy, Ω,∆δ) and/or RDCs. It outputs all the
possible oriented peptide planes consistent with the RDC and/or RCSA data.
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Table 2: Results on the alignment tensor computation, and RDC and RCSA data fit.
(a) Experimental NMR data is from [12]. RMSD is the root-mean-square deviation
between the back-computed and experimental values. (b) N-HN RDC and 13C′-RCSA,
and (c) N-HN RDC and 15N-RCSA, were used to compute the global fold. (d) The
alignment tensors for the global folds computed by rdc-csa-analytic agree well with
that of the reference NMR structure.

Model RDC and RCSAa Diagonalized Alignment Rhombicityd

used & RMSDs Tensor Syy, Szz (ρ)

1D3Z N-HN: 1.11 Hz -2.31, 51.17 0.61

1D3Z N-HN: 1.17 Hz, 13C′-RCSA: 6.85 ppb -1.40, 50.57 0.63

1D3Z N-HN: 1.40 Hz, 15N-RCSA: 10.08 ppb -3.56, 49.40 0.57

rdc-csa-analytic b N-HN: 1.21 Hz, 13C′-RCSA: 7.38 ppb -0.71, 51.11 0.65

rdc-csa-analytic c N-HN: 1.13 Hz, 15N-RCSA: 9.22 ppb -3.98, 46.10 0.55

3 Results and Discussion

3.1 Backbone Global Fold of Ubiquitin from Experimental RDC
and RCSA

We applied our algorithm to compute the global fold of human ubiquitin. The
protein ubiquitin has been a model system in many solution-state [6,7,12,14,24,
30, 56] and solid-state [41, 43] NMR studies. The solution structure of ubiquitin
(PDB id: 1D3Z), and a 1.8 Å X-ray crystallographic structure of ubiquitin [55]
(PDB id: 1UBQ), available in the PDB [2], were used as references. The exper-
imental N-HN RDC, 13C′-RCSA and 15N-RCSA data were obtained from the
previously published work by Cornilescu and Bax [12]. We used the uniform
average values of the principal components of the CSA tensors reported in [12].
Such an assumption has been used widely in the literature for protein structure
refinement against RCSA data [10, 26, 27, 53]. Whenever residue-specific CSA
tensors can be determined, as in [6, 7, 30, 62, 63], rdc-csa-analytic can use
those tensors. The NOE restraints and hydrogen bond information for ubiquitin
were extracted from the NMR restraint file for the PDB id 1D3Z [14].

Since RCSA measurement is usually accompanied by that of N-HN RDC,
recorded for the same sample under the same alignment conditions [10, 12, 28],
computing an accurate backbone global fold from this limited amount of data,
as a first step in protein structure computation, is of considerable interest. Here
we present results of backbone global fold computation by rdc-csa-analytic
using (1) N-HN RDC and 13C′-RCSA, and (2) N-HN RDC and 15N-RCSA.

The alignment tensor was computed from N-HN RDC and 13C′-RCSA/15N-
RCSA data by bootstrapping the computation with an ideal helix for the helical
region I23–K33 of ubiquitin (see the SI Appendix B [50]), and was used subse-
quently in the global fold computation. As summarized in Table 2, the alignment
tensors agree well with those computed for the reference NMR structure. It is
worth noting that if the alignment tensor is estimated by other methods [11],
rdc-csa-analytic can use that as input to compute the backbone global fold.

rdc-csa-analytic computed accurate backbone conformations from N-HN

RDC plus either 13C′-RCSA or 15N-RCSA data. As shown in Table 3, the back-
bone RMSDs between the computed SSEs and the reference structures are within
0.61 Å, and for about half of the cases they are less than 0.3 Å. The SSE back-
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Table 3: Backbone RMSDs (Å) of SSE fragments computed by rdc-csa-analytic.
(a) NMR data is from [12].(b) 12 H-bond information, and (c) 5 Cα-Cα approximate
distance restraints derived from NOEs [56] were used.

Data Used; α-helix β1 β2 β3 β4 β5 β-sheetb Global
Referencea I23–K33 Q2–T7 T12–V17 Q41–F45 K48–L50 S65–V70 β1,··· ,5 Foldc

N-HN,13C′-RCSA; NMR 0.27 0.24 0.35 0.16 0.19 0.20 0.71 1.04

N-HN,13C′-RCSA; X-ray 0.23 0.32 0.37 0.28 0.20 0.25 0.79 1.09

N-HN,15N-RCSA; NMR 0.26 0.51 0.42 0.28 0.31 0.30 0.93 1.31

N-HN,15N-RCSA; X-ray 0.25 0.61 0.43 0.36 0.32 0.35 0.99 1.38
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Fig. 2: Correlations between back-computed and experimental N-HN RDCs and 13C′-
RCSA (a, b), and those for N-HN RDC and 15N-RCSA (c, d) shown for the global folds
computed by rdc-csa-analytic.

bones computed using N-HN RDC and 13C′-RCSA data agree better with the
reference structures than those computed using N-HN RDC and 15N-RCSA data
and compared with the reference structures. Table 2 and Figure 2 show that the
back-computed RDCs and RCSAs for the rdc-csa-analytic-computed struc-
tures are in good agreement with their experimental counterparts. For the struc-
ture computed using N-HN RDC and 15N-RCSA, the 15N-RCSA Pearson’s cor-
relation coefficient is 0.957, and for other three cases the correlation coefficients
are 0.99 or more (see Figure 2). This is explained by the slightly better quality
structure obtained using N-HN RDC and 13C′-RCSA data than that obtained
using N-HN RDC and 15N-RCSA data. The β-sheet is computed using 12 hy-
drogen bond restraints in addition to the RDC and RCSA data. The α-helix
(I23–K33) and the β-sheet for ubiquitin were packed using 5 approximate Cα-
Cα distances derived from NOEs using the method described in [56]. The top
1000 packed structures obtained from the packing of ubiquitin α-helix and β-
sheet, computed using N-HN RDC and 13C′-RCSA data, have backbone RMSDs
within the range 1.04–1.39 Å versus the reference NMR structure, and 1.09–1.42
Å versus the X-ray reference structure. The top 1000 packed structures obtained
from the packing of ubiquitin α-helix and β-sheet, computed using N-HN RDC
and 15N-RCSA data have backbone RMSDs within the range 1.31–1.86 Å ver-
sus the reference NMR structure, and 1.38–1.97 Å versus the X-ray reference
structure. Figure 3 shows the overlay of the backbone fold computed by rdc-
csa-analytic versus the NMR and X-ray reference structures.

These results indicate that rdc-csa-analytic can be used to compute accu-
rate global folds from a minimal amount of RDC and RCSA data. Protein back-
bone global folds of similar resolution have been used successfully in empirical
high-resolution structure determinations [65], NOE assignment [22,66], and side-
chain resonance assignment [67]. Therefore, our method will be useful in high-
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Fig. 3: Overlay of the ubiquitin global fold computed by rdc-csa-analytic using N-
HN RDC and 13C′-RCSA or 15N-RCSA versus the NMR and X-ray reference structures.
(a) (b) (c) (d) 

Fig. 4: The peptide plane orientations correspond to the
two roots of the quadratic equations (Proposition 2) de-
rived from Cα-C′, C′-N and N-HN RDCs measured in
single alignment medium.

π/2 

(a) (b) 

Fig. 5: Visualization of all
sixteen peptide plane orien-
tations together.

resolution protein structure determination. Furthermore, the use of RCSAs in the
first stage of structure computation to compute accurate global folds is a novel
concept, and our paper, being the first one to demonstrate this, can be a stepping
stone to further research that exploits this new type of experimental data.

3.2 16-Fold Degeneracy of Peptide Plane Orientations

Our algorithm 3planar was tested on the experimental RDC data for the pro-
tein ubiquitin (PDB id: 1D3Z) obtained from the BioMagResBank (BMRB) [54].
Using the singular value decomposition [29,56] module of rdc-csa-analytic [52,
64,65], we computed the principal components of the alignment tensor for ubiq-
uitin using its NMR structure. We used Cα-C′, C′-N and N-HN RDCs, measured
in one alignment medium, for the peptide plane defined by the residues Ala28
and Lys29 of ubiquitin. 3planar then computed the 16 oriented peptide planes
(individual planes are shown in the online SI Appendix D [50]). In Figure 4
(a, b) and (c, d), the two sets of 8 oriented peptide planes corresponding to the
two roots of the quadratic equation are shown. Figure 5 shows the 16 oriented
peptide planes visualized together. A counterclockwise rotation of 90◦ about the
x-axis elucidates the symmetry in the peptide plane orientations. Similar results
were obtained when N-HN RDC, 15N-RCSA and 13C′-RCSA data [12] was used,
and the corresponding alignment tensor was computed by rdc-csa-analytic.

3planar is a Θ(1)-time deterministic algorithm. During protein backbone
structure determination, such as when using the rdc-analytic framework, the
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multiple possible peptide plane orientations consistent with RDC/RCSA are
usually ruled out by the kinematic coupling between peptide planes along the
polypeptide chain, standard biophysical and protein geometry assumptions, or
using additional experimental restraints.

4 Conclusions

We described a novel algorithm, rdc-csa-analytic, that uses a sparse set of
RCSAs and RDCs to compute the protein backbone global fold accurately. Our
algorithm is the first algorithm to demonstrate that the orientational restraints
from RCSA can be used in the initial stage of structure computation. We hope
that this breakthrough will shed new light on the information content of RCSA,
and help NMR structural biologists use our new ways of using RCSA to solve
protein structures. Our algorithm barely scratches the surface of this new area,
and much work remains to be done. Computing loop conformations using RCSA
is an immediate future extension. Ubiquitin is the only protein for which we
were able to obtain experimental 15N-RCSA and 13C′-RCSA data, available in
the public domain. In future, we would like to test our algorithms on other
protein systems, when experimental data becomes available for those systems.

When using orientational restraints in structure determination, it is impor-
tant to know all the possible degeneracies associated with them, and their im-
plications for structure determination. We gave exact and tight bounds on the
orientational degeneracy of peptide planes computed using RDCs and/or RC-
SAs, and described a Θ(1)-time algorithm, 3planar, to compute them.

Although RDCs have been regularly used in protein structure determination,
RCSAs have been used only in a few cases for structure validation [14] and refine-
ment [10, 26, 27, 53]. We envision that algorithms, such as rdc-csa-analytic,
that use RCSA data plus RDCs during the initial stages of protein structure
determination will play a large role in future.
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