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Appendix

In Appendix A, we show that solving the system of equations from N-HN RDC, and 13C-RCSA
or 15N-RCSA to compute the peptide plane orientations leads to solving a degree 32 univariate
polynomial equation. In contrast, our algorithm rdc-csa-analytic uses a novel hybrid approach,
and avoids solving such a high-degree polynomial equation. In Appendix B, we describe the
algorithmic modules of rdc-csa-analytic, and their inner workings. In Appendix C, we give a
proof of Proposition 2, and describe a method to construct all possible peptide plane orientations
that satisfy RCSA and/or RDC data measured for a planar structural motif such as a peptide
plane. Finally, in Appendix D, we give the sixteen oriented peptide planes computed for the
peptide plane defined by Ala28 and Lys29 of ubiquitin.

A note on the exact solutions. The derivations below are not short, but they must only be
performed once as we have done here. After that, the simple results (the closed-form solutions)
may be used without thought of the proofs of correctness given here.

A Peptide Plane Orientations from N-HN RDC, and 13C-RCSA
or 15N-RCSA

Here we consider the most general case when two ψ-defining RCSAs or RDCs are available for
residues. From NMR experiments standpoint, this case is important, since one of 13C′-RCSA or
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15N-RCSA are measured along with N-HN RDC. Further, this includes the case when two RCSAs
per residue are available. We show that given the orientation or the peptide plane Pi, and two
ψ-defining RDCs and/or RCSAs for vectors on the peptide plane Pi+1, computing the orientations
of Pi+1 relative to Pi requires us to solve a degree 32 polynomial equation.

We assume that the peptide plane is planar. Let v1 = δxx = (x1, y1, z1)
T and v2 = δyy =

(x2, y2, z2)
T denote the two unit vectors representing two principal components of the traceless

RCSA tensor on the peptide plane in the POF. Let the unit vectors v3 = (x3, y3, z3)
T and v4 =

(x4, y4, z4)
T denote N-HN and Cα-C′ bond orientations, respectively relative to the POF.

Since v1 , v2 , v3 and v4 are coplanar, we have

v1 = αv3 + βv4 (A.1)

v2 = αv3 + βv4 (A.2)

where α, β ∈ R are constants, from which we get four independent equations

x1 = α1x3 + β1x4 (A.3)

y1 = α1y3 + β1y4 (A.4)

x2 = α2x3 + β2x4 (A.5)

y2 = α2y3 + β2y4 (A.6)

where αi, βi for 1 ≤ i ≤ 2 are constants. These four equations can be used in the reduced RCSA
equation (Eq. (9) of the main text [12]) to obtain

a1x
2
3 + a2y

2
3 + a3x

2
4 + a4y

2
4 + a5x3x4 + a6y3y4 = a0 (A.7)

where ai for 0 ≤ i ≤ 6 are constants.
The reduced RDC equation for v4 can be written as

b1x
2
3 + b2y

2
3 = b0 (A.8)

where bi for 0 ≤ i ≤ 2 are constants.
Since the angle between v3 and v4 is fixed, we have the following equation:

x3x4 + y3y4 + z3z4 = c0 (A.9)

where the constant c0 is the cosine of the angle between v3 and v4 .
Since the orientation of the previous peptide plane has already been determined inductively,

we let the unit vector along N-Cα bond of the previous peptide plane be denoted by (d1, d2, d3)
T .

From the fact that the angle between v4 and (d1, d3, d3)
T is fixed we get one more independent

equation:

d1x4 + d2y4 + d3z4 = d0 (A.10)

where di for 0 ≤ i ≤ 3 are constants.
Since v3 and v4 are unit vectors we have two more independent equations:

x23 + y23 + z23 = 1 (A.11)

x24 + y24 + z24 = 1. (A.12)

2



Now all we need to do is to solve the following set of simultaneous equations:

a1x
2
3 + a2y

2
3 + a3x

2
4 + a4y

2
4 + a5x3x4 + a6y3y4 = a0 (A.13)

b1x
2
3 + b2y

2
3 = b0 (A.14)

x3x4 + y3y4 + z3z4 = c0 (A.15)

d1x4 + d2y4 + d3z4 = d0 (A.16)

x23 + y23 + z23 = 1 (A.17)

x24 + y24 + z24 = 1. (A.18)

It can be shown that solving this system (Eq. (A.13) to Eq. (A.18)) of polynomial equations is
equivalent to solving a 32 degree univariate polynomial equation, which is a difficult computational
problem. Our algorithm rdc-csa-analytic uses a novel hybrid approach, and avoids solving such
a high-degree polynomial equation.

B The Four Modules of rdc-csa-analytic

Below we give a brief description of the four core modules of rdc-csa-analytic.

Computation of Alignment Tensor. Our alignment tensor computation module is built upon
our previous implementations in rdc-csa-analytic that uses RDC data [17, 20, 19]. We have
extended this to incorporate the constraints from RCSAs. The data fitting is done using singular
value decomposition (SVD) [7, 17, 18, 6], which now uses equations for RCSAs. An ideal helix
model for a helical SSE of the protein is used to bootstrap the alignment tensor computation,
and using SVD the initial alignment tensor S is computed. Then S iteratively refined by using
the computed helix structures by rdc-csa-analytic. Once the values of the alignment tensor is
estimated, other fragments of the protein are computed using these values. Usually 2 or 3 iterations
(a user-defined parameter) are sufficient to obtain a very good estimate of S.

Determination of Conformations and Orientations of the SSEs. rdc-csa-analytic uses
a divide-and-conquer approach to partition the protein backbone of size n residues into Θ(n) frag-
ments of bounded lengths consisting of SSEs and loops, hence it runs in Θ(n) time. For each SSE, it
inductively computes the peptide plane orientations using the method described in Section 2.3. The
conformations are represented by a conformation tree grown recursively as we solve for the DOFs
progressively. An internal (i.e., non-leaf) node in the tree represents the conformation of a part of
a candidate SSE (α-helix or β-Strand), and a leaf node represents a candidate SSE conformation
computed from RDCs and RCSAs. As each node is visited in a depth-first traversal of the tree, a
set of conformation filters [13, 14] are applied as predicates. If the node passes all the filters, then
the subtree rooted at that node is visited; otherwise, the node is designated as a dead-end node,
and the subtree rooted at that node is pruned. Finally, all remaining unpruned conformations (leaf
nodes) are evaluated for the satisfaction of available experimental data, and deviations from stan-
dard average (φa, ψa) values for the SSE type. The top k (user-defined parameter) conformations
are output. When k = 1, only the maximum-likelihood (ML) SSE conformation is output.

Since every conformation consistent with the data is either pruned or evaluated, rdc-csa-
analytic guarantees completeness. The experimental uncertainties in RDC and RCSA data are
modeled by adding a Gaussian noise.

The RDC/RCSA RMSD between back-computed and experimental RDCs/RCSAs is computed
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using the equation

RMSDx =

√√√√ 1

n

n∑
i=1

(rbx,i − rex,i)2, (B.1)

where x is either a φ-defining or a ψ-defining RDC/RCSA type, n is the number of RDCs/RCSAs,
rex,i is the experimental RDC/RCSA, and rbx,i is the corresponding back-computed RDC/RCSA.
The RMS deviations from standard average (φa, ψa) is given by

RMSDφ,ψ =

√√√√ 1

2n

n∑
i=1

((φi − φa)2 + (ψi − ψa)2), (B.2)

where (φa, ψa) are the standard averages of φ and ψ dihedrals for the SSE type, φi and ψi are the
dihedrals computed using RDC and RCSA data, and n is the number of residues of the SSE.

Simultaneous Structure Determination and Packing of β-Strands into β-Sheets. Let E =
{E1, . . . , En} be a β-sheet, where each Ei specifies the boundaries of the β-strand Ei. We arbitrarily
pick one of the β-strands in the β-sheet as the first strand, and compute an ML conformation using
the previous module. Let the strand conformation be included in the β-sheet S, which is initialized
to an empty set. For each strand Ei adjacent to S, all possible conformations are computed using
the previous module. As each conformation is evaluated, pack (we call it the pack procedure) it
with S using a sparse set TNOE of NOEs (or hydrogen bond information, if available), such that Ei
forms favorable hydrogen bonds with S. The best scoring strand Eibest is chosen to be paired with
S. This process continues until all the strands in E are computed and packed to form a β-sheet.
The pseudo-code for strand packing algorithm is given below.

ComputeAndPackβSheet(S, TNOE)

1. Let E = {E1, . . . , En} be the β-sheet specification, where Eis are strand specifications

2. Initialize the partial sheet conformation S←∅

3. Compute E1 using rdc-csa-analytic

4. S←S ∪{E1}

5. ∀Ei ∈ E, 2 ≤ i ≤ n in the order of strand adjacency

6. ∀Eileaf , a solution (leaf node) in a rdc-csa-analytic conformation tree

7. pack(S,Eileaf , TNOE) and test if it scores better than the previously packed sheet

8. Let Eibest be the strand with best packing and RDC satisfaction scores

9. S←S ∪
{
Eibest

}
10. return S

Assembly of α-Helices and β-Sheets into Backbone Global Fold. It is well known that
at least three distance constraints are needed to determine the relative translation between two
oriented rigid bodies. The computed SSEs from RDC and RCSA data are all oriented with a
four-fold degeneracy inherent to RDCs and RCSAs. Although the orientational degeneracy can
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be resolved when RDCs and RCSAs can be recorded in multiple alignment media, it cannot be
resolved using only RDC and RCSA data in one alignment medium, unless other types of data
such as NOEs are used. It has been shown that the orientational degeneracy can be resolved and
the relative translations between the SSEs can be determined using a small number of (at least
three NOEs between a pair of SSEs) inter-SSE NOEs [2, 17, 20]. Since the NOEs are interpreted
as distance intervals between atoms, a small number of NOE distance restraints can bound the
conformation space into a small volume which can be discretized and enumerated using a grid
search of parameterized resolution. A sparse set of inter-SSE NOEs are extracted from chemical
shift information alone [20]. For large and perdeuterated proteins, isoleucine-leucine-valine (ILV)
selective labeling method [3, 4, 15, 11] and selective labeling of alanine residues [5, 1], in which
protons and 13C isotopes are selectively incorporated into methyl groups of Ileδ1 , Leuδ, Valγ and
Alaβ side-chains on a deuterated background, can be used to measure NOE distances between HN-
HN, methyl-HN and methyl-methyl protons. The inter-SSE NOEs often involve side-chain protons.
Since the side-chain conformation is not know a priori, a discretized set of side-chain conformations
can be used to model the possible side-chain proton positions. We used Richardson’s Rotamer
Library [8] to model the discrete side-chain conformations.

Suppose E be the set of inter-SSE NOEs used to pack two SSEs. For a distance restraint ei ∈ E,
let Qi be the set of possible interpretations in terms of atom positions (rotamer pairs in case of
NOEs). Each element qij ∈ Qi, 1 ≤ j ≤ |Qi| corresponds to a pair of atom positions and the
corresponding distance between them which is represented by a spherical shell with inner and outer
radii that respectively represent the lower and upper bounds for the distance restraint ei. Then the
volume of translation between the two SSEs that satisfies the distance restraints in E is given by

V =

|E|⋂
i=1

|Qi|⋃
j=1

qij . (B.3)

Let S = {s1, . . . , sm} be the set of SSEs computed by rdc-csa-analytic. Our algorithm
pack takes as input the set of SSEs S, the set of inter-SSE distance restraints E, and parameters
to specify the grid resolution and ensemble size, and computes an ensemble of packed structures.
It uses the distance restraints to resolve the four-fold degeneracy of SSE orientations due to the
symmetry of dipolar operator. At each grid point during the grid search over the space V of relative
translations, the packed structures are checked for steric clashes. The computed ensemble of packed
structures can further be clustered and evaluated [9, 10] to trim the ensemble size, in order to obtain
a set of representative packed structures.

C Peptide Plane Orientations from Three RDCs and/or RCSAs
on Coplanar Internuclear Vectors

We give a proof of Proposition 2, and describe a method to construct all possible peptide plane
orientations that satisfy RCSA and/or RDC data measured for a planar structural motif such as a
peptide plane.

Any combination of three measurements, each of which is either an RCSA on a nucleus on the
peptide plane or an RDC on an internuclear vector on the peptide plane, measured in one alignment
medium, can be used in our derivation to elucidate the peptide plane orientations. In general, our
derivation works for any combination of three RDCs and RCSAs measured on a planar structural
motif to compute all possible discrete orientations of the planar motif that satisfy the RDCs and
RCSAs. Our derivation assumes that the alignment tensor is rhombic. That is, magnitudes of
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the two smaller principal components of the alignment tensor are not equal. In other words,
if Sxx, Syy and Szz are the three principal components of a traceless alignment tensor S with
|Szz| > |Syy| > |Sxx|, then S is rhombic if and only if |Sxx| 6= |Syy|. The rhombicity R of the
alignment tensor is given by the expression R = (2/3)(Sxx − Syy)/Szz. Clearly, R ∈ [0, 2/3].

We restate Proposition 2 below and then give a proof. Then we give a procedure to construct
the peptide plane orientations from the roots of the quadratic equation.

Proposition 2. Given a rhombic alignment tensor, and 3 measurements, each of which is either
an RCSA on a nucleus on the peptide plane P or an RDC on an internuclear vector on P , there
exist at most 16 possible orientations for P that satisfy the 3 measurements, and these orientations
can be written and solved in closed form by solving a quadratic equation.

Proof. The proof has two parts. In the first part, we derive a quadratic equation for the peptide
plane orientations from three RCSA and/or RDC equations. In the second part, we will solve the
quadratic equation exactly in closed form and construct all possible peptide plane orientations.

Derivation of a quadratic equation from three RCSA and/or RDC equations. We
assume that the peptide plane is strictly planar, and we have any combination of three RCSAs and
RDCs measured in one alignment medium for three unit vectors on the plane. For example, any
three data types from the set

{
N-HN,C′-N,Cα-C′,C′-HN

}
∪
{
13C′-RCSA, 15N-RCSA, 1H-RCSA

}
work for our derivations.

Let P denote the peptide plane. Let v01 = (x01, y01, z01)
T and v02 = (x02, y02, z02)

T be two
unit vectors on P such that v01 ⊥ v02 . We use the literals x, y, z, u, v and t, and their subscripted
versions for unknowns, and all other literals denote constants throughout the derivation. We assume
that for the set of RCSAs and RDCs we know the Saupe alignment tensor S, and we work in a
principal order frame that diagonalizes S.

Since RCSAs can be interpreted as linear combinations of two virtual RDCs (see Eq. (5) of
the main text [12]), we work on the most general form of the equations, that is, we will show
how to compute the peptide plane orientations when three RCSA (i.e., 13C′-RCSA, 15N-RCSA and
1H-RCSA) values are known for the respective atoms on the plane P . Then we will show that any
combination of three RCSAs and RDCs is a special case of our derivation.

For 13C′-RCSA ∆δC′ , let the unit vectors v1 = (x1, y1, z1)
T and v2 = (x2, y2, z2)

T denote, in
the POF, the two principal components of the CSA tensor that are on the peptide plane. For
15N-RCSA ∆δN, let the unit vectors v3 = (x3, y3, z3)

T and v4 = (x4, y4, z4)
T denote, in the POF,

the two principal components of the CSA tensor that are on the peptide plane. For 1H-RCSA ∆δH,
let the unit vectors v5 = (x5, y5, z5)

T and v6 = (x6, y6, z6)
T denote, in the POF, the two principal

components of the CSA tensor that are on the peptide plane.
Since v01 , v02 , v1 , · · · ,v6 are coplanar vectors, we can write

v1 = a1v01 + b1v02 v2 = a2v01 + b2v02

v3 = a3v01 + b3v02 v4 = a4v01 + b4v02

v5 = a5v01 + b5v02 v6 = a6v01 + b6v02 ,

where ai and bi for 1 ≤ i ≤ 6 are constants, determined from the fixed kinematic relationships
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between these coplanar vectors. From the above equations, we can write the following equations:

x1 = a1x01 + b1x02 y1 = a1y01 + b1y02

x2 = a2x01 + b2x02 y2 = a2y01 + b2y02

x3 = a3x01 + b3x02 y3 = a3y01 + b3y02

x4 = a4x01 + b4x02 y4 = a4y01 + b4y02

x5 = a5x01 + b5x02 y5 = a5y01 + b5y02

x6 = a6x01 + b6x02 y6 = a6y01 + b6y02.

Substituting the above equations for x1, . . . , x6, y1, . . . , y6 in the reduced RCSA equations for
∆δC′ , ∆δN and ∆δH, we obtain

A1x
2
01 +A2y

2
01 +A3x

2
02 +A4y

2
02 +A5x01x02 +A6y01y02 +A7 = 0 (C.1)

B1x
2
01 +B2y

2
01 +B3x

2
02 +B4y

2
02 +B5x01x02 +B6y01y02 +B7 = 0 (C.2)

C1x
2
01 + C2y

2
01 + C3x

2
02 + C4y

2
02 + C5x01x02 + C6y01y02 + C7 = 0, (C.3)

where

A1 = aλ2a
2
2 + aλ1a

2
1, A2 = bλ2a

2
2 + bλ1a

2
1, A3 = aλ2b

2
2 + aλ1b

2
1,

A4 = bλ1b
2
1 + bλ2b

2
2, A5 = 2aλ1a1b1 + 2aλ2a2b2, A6 = 2bλ1a1b1 + 2bλ2a2b2, A7 = −c1,

B1 = aλ4a
2
4 + aλ3a

2
3, B2 = bλ4a

2
4 + bλ3a

2
3, B3 = aλ4b

2
4 + aλ3b

2
3,

B4 = bλ3b
2
3 + bλ4b

2
4, B5 = 2aλ3a3b3 + 2aλ4a4b4, B6 = 2bλ3a3b3 + 2bλ4a4b4, B7 = −c2,

C1 = aλ6a
2
6 + aλ5a

2
5, C2 = bλ6a

2
6 + bλ5a

2
5, C3 = aλ6b

2
6 + aλ5b

2
5,

C4 = bλ5b
2
5 + bλ6b

2
6, C5 = 2aλ5a5b5 + 2aλ6a6b6, C6 = 2bλ5a5b5 + 2bλ6a6b6, C7 = −c3.

In the above equations, the constants a, b, c1, c2 and c3 are defined as

a = Sxx − Szz, b = Syy − Szz,
c1 = ∆δC′ − (λ1 + λ2)Szz, c2 = ∆δN − (λ3 + λ4)Szz, c3 = ∆δH − (λ5 + λ6)Szz,

where the constants λ1 and λ2 are defined by the magnitudes of the principal components 13C′-
RCSA along v1 and v2 , the constants λ3 and λ4 are defined by the magnitudes of the principal
components 15N-RCSA along v3 and v4 , and the constants λ5 and λ6 are defined by the magnitudes
of the principal components 1H-RCSA along v5 and v6 , using Eq. (6) Eq. (7) of the main text [12].

We now make the following three observations (verified by expanding and substituting the values
for Ai, Bi, and Ci, for 1 ≤ i ≤ 6), that will be useful in transforming Eq. (C.1), Eq. (C.2) and
Eq. (C.3) into simpler forms.

Observation 1. A1B2 −A2B1 = A1C2 −A2C1 = B1C2 −B2C1 = 0. (C.4)

Observation 2. A3B4 −A4B3 = A3C4 −A4C4 = B3C4 −B4C3 = 0. (C.5)

Observation 3. A5B6 −A6B5 = A5C6 −A6C5 = B5C6 −B6C5 = 0. (C.6)

We use the symbol × for scalar multiplication in our derivations unless otherwise specified. Now

Eq. (C.1)×B5 − Eq. (C.2)×A5 = 0

⇒ (A1B5 −A5B1)x
2
01 + (A2B5 −A5B2)y

2
01

+ (A3B5 −A5B3)x
2
02 + (A4B5 −A5B4)y

2
04 + (A7B5 −A5B7) = 0, (C.7)
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and

Eq. (C.1)× C5 − Eq. (C.3)×A5 = 0

⇒ (A1C5 −A5C1)x
2
01 + (A2C5 −A5C2)y

2
01

+ (A3C5 −A5C3)x
2
02 + (A4C5 −A5C4)y

2
04 + (A7C5 −A5C7) = 0. (C.8)

Further, we observe that

(A3B5 −A5B3)(A4C5 −A5C4)− (A4B5 −A5B4)(A3C5 −A5C3) = 0, (C.9)

and

(A1B5 −A5B1)(A2C5 −A5C2)− (A2B5 −A5B2)(A1C5 −A5C1) = 0, (C.10)

which can easily be shown by expanding, and then using Eq. (C.4), Eq. (C.5) and Eq. (C.6).
Now

Eq. (C.7)× (A4C5 −A5C4)− Eq. (C.8)× (A4B5 −A5B4) = 0

⇒ E1x
2
01 + E2y

2
01 + E3 = 0, (C.11)

where

E1 = (A1B5 −A5B1)(A4C5 −A5C4)− (A1C5 −A5C1)(A4B5 −A5B4)

E2 = (A2B5 −A5B2)(A4C5 −A5C4)− (A2C5 −A5C2)(A4B5 −A5B4)

E3 = (A7B5 −A5B7)(A4C5 −A5C4)− (A7C5 −A5C7)(A4B5 −A5B4).

Similarly,

Eq. (C.7)× (A2C5 − C2A5)− Eq. (C.8)× (A2B5 −B2A5) = 0

⇒ F1x
2
02 + F2y

2
02 + F3 = 0, (C.12)

where

F1 = (A3B5 −A5B3)(A2C5 −A5C2)− (A3C5 −A5C3)(A2B5 −A5B2)

F2 = (A4B5 −A5B4)(A2C5 −A5C2)− (A4C5 −A5C4)(A2B5 −A5B2)

F3 = (A7B5 −A5B7)(A2C5 −A5C2)− (A7C5 −A5C7)(A2B5 −A5B2).

Now

Eq. (C.1)×B1 − Eq. (C.2)×A1 = 0

⇒ (A3B1 −A1B3)x
2
02 + (A4B1 −A1B4)y

2
02

+ (A5B1 −A1B5)x01x02 + (A6B1 −A1B6)y01y02 + (A7B1 −A1B7) = 0, (C.13)

and

Eq. (C.1)× C1 − Eq. (C.3)×A1 = 0

⇒ (A3C1 −A1C3)x
2
02 + (A4C1 −A1C4)y

2
02

+ (A5C1 −A1C5)x01x02 + (A6C1 −A1C6)y01y02 + (A7C1 −A1C7) = 0. (C.14)
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Further we observe that

(A3B1 −A1B3)(A4C1 −A1C4)− (A4B1 −A1B4)(A3C1 −A1C3) = 0, (C.15)

which can easily be shown by expanding, and then using Eq. (C.4), Eq. (C.5) and Eq. (C.6).
Now

Eq. (C.13)× (A4C1 −A1C4)− Eq. (C.14)× (A4B1 −A1B4) = 0

⇒ G1x01x02 +G2y01y02 +G3 = 0, (C.16)

where

G1 = (A5B1 −A1B5)(A4C1 −A1C4)− (A5C1 −A1C5)(A4B1 −A1B4)

G2 = (A6B1 −A1B6)(A4C1 −A1C4)− (A6C1 −A1C6)(A4B1 −A1B4)

G3 = (A7B1 −A1B7)(A4C1 −A1C4)− (A7C1 −A1C7)(A4B1 −A1B4).

We make one more observation:

E1F2 − E2F1 = E1G2 − E2G1 = F1G2 − F2G1 = 0, (C.17)

from which we obtain

E1

F1
=
E2

F2
,

E1

G1
=
E2

G2
,

F1

G1
=
F2

G2
. (C.18)

Using Eq. (C.18) in Eq. (C.12) and Eq. (C.16), we obtain

E1x
2
02 + E2y

2
02 + E4 = 0, (C.19)

and
E1x01x02 + E2y01y02 + E5 = 0, (C.20)

where

E4 =
E1F3

F1
, E5 =

E1G3

G1
.

We now want to solve Eq. (C.11), Eq. (C.19) and Eq. (C.20). Since there are four variables,
we need one more independent equation, which we get from the fact that v01 ⊥ v02 . In fact, even
when the unit vectors v01 and v02 are chosen not to be perpendicular to each other, our derivation
works. We let cos(∠v01 ,v02) = τ , where τ is a constant.

x01x02 + y01y02 + z01z02 = cos(∠v01 ,v02) = τ (C.21)

⇒ z201z
2
02 = (τ − x01x02 − y01y02)2

⇒ (1− x201 − y201)(1− x202 − y202) = (τ − x01x02 − y01y02)2

⇒ x201 + y201 + x202 + y202

− x201y202 − x202y201 + 2x01x02y01y02 − 2τ(x01x02 + y01y02)− (1− τ2) = 0. (C.22)
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Using Eq. (C.20) in Eq. (C.22), we eliminate the terms containing factor x01x02 as follows:

Eq. (C.22)⇒ 2τ(x01x02 + y01y02)

= x201 + y201 + x202 + y202 − x202y201 − x201y202 + 2x01x02y01y02 − (1− τ2)

⇒ 2τ

(
−E5 − E2y01y02

E1
+ y01y02

)
= x201 + y201 + x202 + y202 − x202y201 − x201y202 + 2

(
−E5 − E2y01y02

E1

)
y01y02 − (1− τ2)

⇒ −2τE5

E1
+ 2τ

(
1− E2

E1

)
y01y02

= x201 + y201 + x202 + y202 − x202y201 − x201y202 + 2

(
−E5 − E2y01y02

E1

)
y01y02 − (1− τ2)

⇒ −2τE5

a
+

(
2τ

(
1− E2

E1

)
+

2E5

E1

)
y01y02

= x201 + y201 + x202 + y202 − x202y201 − x201y202 −
2E2

E1
y201y

2
02 − (1− τ2)

⇒ x201 + y201 + x202 + y202 − x202y201 − x201y202

− 2E2

E1
y201y

2
02 −

(
2τ

(
1− E2

E1

)
+

2E5

E1

)
y01y02 − (1− τ2) +

2τE5

E1
= 0

⇒ x201 + y201 + x202 + y202 − x202y201 − x201y202 +H1y
2
01y

2
02 +H2y01y02 +H3 = 0, (C.23)

where

H1 = −2E2

E1
, H2 = −2τ

(
1− E2

E1

)
− 2E5

E1
, H3 = −1 + τ2 +

2τE5

E1
.

Rearranging the terms in Eq. (C.20) and squaring, we can express y01y02 as a linear combination
of terms involving x201x

2
02 and y201y

2
02 as follows:

Eq. (C.20)

⇒ E1x01x02 = −E5 − E2y01y02

⇒ E2
1x

2
01x

2
02 = (−E5 − E2y01y02)

2 = E2
5 + 2E2E5y01y02 + E2

2y
2
01y

2
02

⇒ y01y02 =
E2

1x
2
01x

2
02 − E2

2y
2
01y

2
02 − E2

5

2E2E5
= I1x

2
01x

2
02 + I2y

2
01y

2
02 + I3, (C.24)

where

I1 =
E2

1

2E2E5
, I2 =

−E2

2E5
, I3 =

−E5

2E2
.

Substituting Eq. (C.24) in Eq. (C.23) we obtain

x201 + y201 + x202 + y202 − x202y201 − x201y202 + J1x
2
01x

2
02 + J2y

2
01y

2
02 + J3 = 0, (C.25)

where

J1 = H2I1 =
E1(−τE1 + τE2 − E5)

E2E5

J2 = H1 +H2I2 =
E2(τE1 − τE2 − E5)

E1E5

J3 = H3 +H2I3 =
τ2E1E2 + τE1E5 + τE2E5 + E2

5 − E1E2

E1E2
.
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We now solve the system of equations Eq. (C.11), Eq. (C.19), Eq. (C.20) and Eq. (C.25)
simultaneously.

We will now transform Eq. (C.20) so that the degree of each of x01, y01, x02 and y02 is even.

Eq. (C.20)

⇒ E1x01x02 = −E5 − E2y01y02

⇒ E2
1x

2
01x

2
02 = E2

2y
2
01y

2
02 + 2E2E5y01y02 + E2

5 (squaring both sides)

⇒ 2E2E5y01y02 = E2
1x

2
01x

2
02 − E2

2y
2
01y

2
02 − E2

5

⇒ 4E2
2E

2
5y

2
01y

2
02 = E4

1x
4
01x

4
02 + E4

2y
4
01y

4
02

− 2E2
1E

2
2x

2
01x

2
02y

2
01y

2
02 − 2E2

1E
2
5x

2
01x

2
02 + 2E2

2E
2
5y

2
01y

2
02 + E4

5 (squaring both sides)

⇒ E4
1x

4
01x

4
02 + E4

2y
4
01y

4
02 − 2E2

1E
2
2x

2
01x

2
02y

2
01y

2
02 − 2E2

1E
2
5x

2
01x

2
02 − 2E2

2E
2
5y

2
01y

2
02 + E4

5 = 0. (C.26)

Now we solve Eq. (C.11), Eq. (C.19), Eq. (C.25) and Eq. (C.26) simultaneously. Let

u = x201 (C.27)

and
v = x202. (C.28)

Then,

Eq. (C.11)⇒ y201 =
−E3 − E1u

E2
(C.29)

and

Eq. (C.19)⇒ y202 =
−E4 − E1v

E2
. (C.30)

Using Eq. (C.29) and Eq. (C.30) in Eq. (C.25), we obtain

K0 +K1u+K2v +K3uv = 0, (C.31)

where

K0 = E3E4J2 − E2E4 − E2E3 + E2
2J3

=
E2

E1E5
(−E3E4E5 + E3E4τE1 − E3E4E2τ − E4E1E5 − E3E1E5 − E2E1E5)

+
E2

E1E5

(
τ2E1E2E5 + τE2E

2
5 + τE1E

2
5 + E3

5

)
K1 = −E1E2 + E2E4 + E2

2 + E1E4J2 =
E2(−E1E5 + E2E5 + τE1E4 − τE2E4)

E5

K2 = E2E3 + E2
2 − E1E2 + E1E3J2 =

E2(E2E5 − E1E5 + τE1E3 − τE2E3)

E5

K3 = E2
1J2 + E2

2J1 + 2E1E2 = 0.

Noting that K3 = 0, we can write Eq. (C.31) as

K0 +K1u+K2v = 0

⇒ v =
−K0 −K1u

K2
. (C.32)
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Using Eq. (C.29) and Eq. (C.30) in Eq. (C.26), we obtain

L1u
2 + L2uv + L3v

2 + L4u+ L5v + L6 = 0, (C.33)

where

L1 = E2
1E

2
4

L2 = 2E2
1E3E4 − 4E2

1E
2
5

L3 = E2
1E

2
3

L4 = 2E1E3E
2
4 − 2E1E4E

2
5

L5 = 2E1E
2
3E4 − 2E1E3E

2
5

L6 = E2
3E

2
4 − 2E3E4E

2
5 + E4

5 .

Using Eq. (C.32) in Eq. (C.33) we obtain

M0 +M1u+M2u
2 = 0, (C.34)

where

M0 = −L5K0

K2
+ L6 +

L3K
2
0

K2
2

M1 = −L5K1

K2
− L2K0

K2
+ L4 +

2L3K0K1

K2
2

M2 = −L2K1

K2
+ L1 +

L3K
2
1

K2
2

.

Eq. (C.34) is a quadratic equation which can be solved in closed form from which the orientations
of the peptide plane can be computed as detailed below.

Constructing the oriented peptide planes. We give the details of how to compute the different
orientations of a peptide plane from the solutions of Eq. (C.34). The construction exploits the
symmetry present in the RDC equation.

Solving Eq. (C.34) we get at most two real solutions. Let {u1, u2} denote the set of these
two solutions. For each ui, 1 ≤ i ≤ 2, we can compute a unique vi using Eq. (C.32). For
a pair (ui, vi), 1 ≤ i ≤ 2, using Eq. (C.27), Eq. (C.28), Eq. (C.29) and Eq. (C.30), we com-
pute sixteen (x01, y01, x02, y02) tuples, where any two tuples differ by the sign of at least one el-
ement, but the absolute values of the elements are the same in all of the sixteen tuples. Out of
these sixteen tuples only four will satisfy Eq. (C.20). This is because, (x01, y01, x02, y02) satisfies
Eq. (C.20) if and only if (−x01, y01,−x02, y02), (x01,−y01, x02,−y02) and (−x01,−y01,−x02,−y02)
satisfy Eq. (C.20). Since v01 = (x01, y01, z01)

T is a unit vector, we get two solutions for z01
which we denote by {z01,−z01}. Similarly, since v02 = (x02, y02, z02)

T is a unit vector we get
two solutions for z02 which we denote by {z02,−z02}. Therefore, there are four possibilities,
viz. {(z01, z02), (−z01, z02), (z01,−z02), (−z01,−z02)}. From Eq. (C.21) we observe that the product
z01z02 must have the same sign which means that only two out of the above four pairs would be
considered. Without loss of generality, we let (z01, z02) and (−z01,−z02) be the two representative
pairs. Therefore, we have eight 6-tuples which can be written as the following product using set
theoretic notation:

{(x01, y01, x02, y02) , (−x01, y01,−x02, y02) , (x01,−y01, x02,−y02) , (−x01,−y01,−x02,−y02)}
×{(z01, z02) , (−z01,−z02)} ,
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Table 1: Sixteen peptide plane orientations from single set of Cα-C′, C′-N, N-HN RDCs,
measured in one alignment medium, for the peptide plane between the residues Ala28
and Lys29 of ubiquitin.

Solution Unit Vector Unit Vector Index to
Number v

N-HN = (x1, y1, z1) v
C′-N = (x2, y2, z2) Figure 1

1 (0.19598, 0.84846, 0.49163) (0.78319, 0.55612, -0.27810) A
3 (0.19598, 0.84846, -0.49163) (0.78319, 0.55612, 0.27810) B
3 (-0.19598, 0.84846, 0.49163) (-0.78319, 0.55612, -0.27810) C
4 (-0.19598, 0.84846, -0.49163) (-0.78319, 0.55612, 0.27810) D
5 (0.19598, -0.84846, 0.49163) (0.78319, -0.55612, -0.27810) E
6 (0.19598, -0.84846, -0.49163) (0.78319, -0.55612, 0.27810) F
7 (-0.19598, -0.84846, 0.49163) (-0.78319, -0.55612, -0.27810) G
8 (-0.19598, -0.84846, -0.49163) (-0.78319, -0.55612, 0.27810) H
9 (0.31133, -0.58536, 0.74862) (0.80635, 0.26825, 0.52711) I
10 (0.31133, -0.58536, -0.74862) (0.80635, 0.26825, -0.52711) J
11 (-0.31133, -0.58536, 0.74862) (-0.80635, 0.26825, 0.52711) K
12 (-0.31133, -0.58536, -0.74862) (-0.80635, 0.26825, -0.52711) L
13 (0.31133, 0.58536, 0.74862) (0.80635, -0.26825, 0.52711) M
14 (0.31133, 0.58536, -0.74862) (0.80635, -0.26825, -0.52711) N
15 (-0.31133, 0.58536, 0.74862) (-0.80635, -0.26825, 0.52711) O
16 (-0.31133, 0.58536, -0.74862) (-0.80635, -0.26825, -0.52711) P

Experimental RDCdata for ubiquitin (PDB id: 1D3Z) is taken from the BioMagResBank
(BMRB) [16]. The right-most column indicates the indexes of the corresponding sub-figure in
Figure 1, that uses the two vectors in columns 2 and 3 to define the peptide plane.

where the symbol × is used for the Cartesian product. We note that each 6-tuple in this set
represents a pair of unit vectors which forms a plane. Thus, for a pair (ui, vi) we have at most 8
possible peptide planes. Since there are at most two (ui, vi) pairs when 1 ≤ i ≤ 2, we have at most
8× 2 = 16 possible peptide plane orientations.

This completes the proof.

D The Sixteen peptide Plane Orientations

The algorithm 3planar computed the peptide plane orientations for the peptide plane defined by
the residues Ala28 and Lys29 of ubiquitin, from Cα-C′, C′-N and N-HN RDCs in one alignment
medium. It first computed the peptide plane orientations represented by pairs of v

N-HN and v
C′-N

unit vectors. The 16 possible pairs of unit vectors are listed in Table 1. Then, each pair of v
N-HN

and v
C′-N unit vectors were used to compute the corresponding oriented peptide plane. In Figure 1,

each of the peptide planes that corresponds to a pair of v
N-HN and v

C′-N unit vectors (see the
right-most column of Table 1) is shown.
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Figure 1: Sixteen peptide plane orientations from single set of Cα-C′, C′-N, N-HN RDCs, measured
in one alignment medium, for the peptide plane between the residues Ala28 and Lys29 of ubiquitin.
The peptide planes were constructed using the unit vectors given in the Table 1.
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