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Abstract. Protein loops often play important roles in biological func-
tions such as binding, recognition, catalytic activities and allosteric reg-
ulation. Modeling loops that are biophysically sensible is crucial to de-
termining the functional specificity of a protein. A variety of algorithms
ranging from robotics-inspired inverse kinematics methods to fragment-
based homology modeling techniques have been developed to predict
protein loops. However, determining the 3D structures of loops using
global orientational restraints on internuclear vectors, such as those ob-
tained from residual dipolar coupling (RDC) data in solution Nuclear
Magnetic Resonance (NMR) spectroscopy, has not been well studied. In
this paper, we present a novel algorithm that determines the protein loop
conformations using a minimal amount of RDC data. Our algorithm ex-
ploits the interplay between the sphero-conics derived from RDCs and
the protein kinematics, and formulates the loop structure determination
problem as a system of low-degree polynomial equations that can be
solved exactly and in closed form. The roots of these polynomial equa-
tions, which encode the candidate conformations, are searched system-
atically, using efficient and provable pruning strategies that triage the
vast majority of conformations, to enumerate or prune all possible loop
conformations consistent with the data. Our algorithm guarantees com-
pleteness by ensuring that a possible loop conformation consistent with
the data is never missed. This data-driven algorithm provides a way to
assess the structural quality from experimental data with minimal mod-
eling assumptions. We applied our algorithm to compute the loops of
human ubiquitin, the FF Domain 2 of human transcription elongation
factor CA150 (FF2), the DNA damage inducible protein I (DinI) and the
third IgG-binding domain of Protein G (GB3) from experimental RDC
data. A comparison of our results versus those obtained by using tra-
ditional structure determination protocols on the same data shows that
our algorithm is able to achieve higher accuracy: a 3- to 6-fold improve-
ment in backbone RMSD. In addition, computational experiments on
synthetic RDC data for a set of protein loops of length 4, 8 and 12 used
in previous studies show that, whenever sparse RDCs can be measured,
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our algorithm can compute longer loops with high accuracy. These results
demonstrate that our algorithm can be successfully applied to compute
loops with high accuracy from a limited amount of NMR data. Our algo-
rithm will be useful to determine high-quality complete protein backbone
conformations, which will benefit the nuclear Overhauser effect (NOE)
assignment process in high-resolution protein structure determination.

1 Introduction

Protein loops are the segments of polypeptide chain that connect two secondary
structure elements (SSEs) such as α-helices or β-strands. In addition to serving
as linkers between SSEs, loops often play crucial roles in protein folding and
stability pathways, and in many other important biological functions such as
binding, recognition, catalytic activities and allosteric regulation [42,7,55,27].

While the global fold, i.e., the conformations and orientations of the SSEs of
a protein, can often be determined with high accuracy via traditional experi-
mental techniques such as X-ray crystallography or nuclear magnetic resonance
(NMR) spectroscopy, modeling loops that seamlessly close the gap between two
consecutive SSEs by satisfying the geometric, biophysical, and data constraints
remains a difficult and open problem. In X-ray crystallography, for instance, the
disorder in a protein crystal can render interpretation of the resulting electron
density for loops difficult. As a result, protein structures found in the Protein
Data Bank (PDB) [3] often have missing loops or disordered loops. The problem
of computing loops that are biophysically reasonable and geometrically valid
is called the loop closure problem. Since its introduction four decades ago in
the classic paper by Gō and Scheraga [26], the loop closure problem has been
an active area of research. In fact, modeling of loops can be regarded as an ab
initio protein folding problem at a smaller scale. It is also an important prob-
lem in de novo protein structure prediction. Therefore, solutions and algorithms
for accurate modeling of loops are highly desirable for understanding of the
physical-chemical principles that determine protein structure and function.

Exploring the conformation space of a protein loop to identify low energy
loop conformations is a difficult computational problem. Methods to identify
such loops include database search and homology modeling [64,60,20], ab initio
methods based on the minimization of empirical molecular mechanics energy
functions [22,54,30], and robotics-inspired inverse kinematics and optimization-
based methods [16,40,69,17,8,31]. These techniques work in two phases: first, the
protein conformation space is explored to find a set of candidate loop constructs,
which are then evaluated in the second phase using an appropriate empirical
energy function to select the most promising set of loops.

Database methods [64,60,20] identify a set of candidate loops from a library of
fragments derived from a protein structure database such as the PDB [3] that fit
the anchor residues on either end of a loop. These loops are further ranked using
criteria such as the sequence homology and conformational energy. Since these
methods heavily rely on the statistical diversity of the structure database, the
accuracy of loop predictions depends on how well the loop is represented in the
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database. However, in general, database methods suffer from limited sampling
of the loop conformations by the fragments in the database.

Ab initio loop modeling methods sample the conformation space randomly
or use robotics-based sampling algorithms to generate a large number of loop
conformations. Loop closure and energy minimization are done by using methods
such as random tweak [54,21], analytical loop closure techniques [17,69], molec-
ular dynamics simulation [5], Markov Chain Monte Carlo (MCMC) simulated
annealing [13,22], and other optimization techniques [30]. The accuracy of loop
prediction here depends on the efficacy of the conformational space exploration
techniques used, and on the quality and proper parameterization (e.g., implicit
or explicit solvent effects) of the force field employed to evaluate the conforma-
tional energy. These algorithms are computationally expensive due to a large
number of random moves accompanied by repeated energy computations.

The protein loop closure problem is an inverse kinematics (IK) problem in
computational biology, i.e., given the poses of terminal anchor residues, it asks
to find all possible values of the degrees of freedom (DOFs) (i.e., the dihedrals φ
and ψ) for which the fragment connects both the anchor residues. This problem
has been studied widely in robotics and biology [16,40,69,17,8,31]. Tri-peptide
loop closure, for which the number of DOFs is six and exactly six geometric
constraints are stipulated due to the closure criterion, can be solved analyti-
cally [69,17,39,11] using exact IK solvers to give at most 16 possible solutions. For
longer loops, the loop closure problem is underconstrained, so a continuous fam-
ily of solutions are possible without additional constraints. Optimization-based
IK solvers such as random tweak [54,21], and the cyclic coordinate descent (CCD)
algorithm [8] have been successful in dealing with a large number of DOFs, and
have found many applications [52,29,65]. These methods iteratively solve for the
DOFs until the loop closure constraints are satisfied. However, the problem of
loop closure subject to orientational restraints (e.g., from NMR data) has not
been studied rigorously in the robotics or computational biology literature, and
no practical deterministic algorithm exists to our knowledge.

Protein structure determination using nuclear Overhauser effect (NOE) dis-
tance restraints is NP-hard [50]. Traditional protein structure determination
from solution NMR data starts with an elongated polypeptide backbone chain,
and uses NOEs and dihedral angle restraints in a simulated annealing/simplified
molecular dynamics (SA/MD) protocol [12,28,41,32,51] to compute the protein
structure. Residual dipolar coupling (RDC) restraints are only incorporated in
the final stages of the structure computation to refine the structures [6,51]. NOE-
based structure determination protocols are known to be prone to local minima
or lead to wrong convergence. To overcome the shortcomings of NOE-based
methods, approaches in [18,46,4,56,25,1] have been proposed that primarily use
RDC data, which provides precise global orientational restraints on internuclear
vector orientations, to determine protein backbone structure. However, most of
these approaches employ stochastic search, and therefore lack any algorithmic
guarantee on the quality of the solution or running time. In recent work from
our lab [66,68,19,71], polynomial-time algorithms have been proposed for high-
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resolution backbone global fold determination from a minimal amount of RDC
data. These algorithms represent the RDC equations and protein kinematics in
algebraic form, and use exact methods in a divide-and-conquer framework to
compute the global fold. In addition, these algorithms use a sparse set of RDC
measurements (e.g., only two RDCs per residue), with the goal of minimizing
the number of NMR experiments, hence the time and cost to perform them.

A high-resolution protein backbone is often a starting point for structure-
based protein design [23,10,24,35]. An accurate backbone structure facilitates
the assignment of NOESY spectra (i.e., NOE assignment), which is a prerequi-
site for high-resolution structure determination protocols, including side-chains.
For example, the algorithms in [66,68,19,71] have been used in [67,73,72] to de-
velop new algorithms for NOE assignment, based on which in [72] we recently
developed a new framework for high-resolution protein structure determination,
which was used prospectively to solve the solution structure of the FF Domain
2 of human transcription elongation factor CA150 (FF2) (PDB id: 2kiq). The
global folds obtained by [66,68,19,71] have all the loops missing which requires a
new algorithm that can compute the missing loops from RDCs. To alleviate this
problem, a heuristic local minimization approach [51] for loops was used in [72].

In this paper, we give a solution to the loop closure problem. We present an
efficient deterministic algorithm, pool, that computes the missing loops from
RDC data. Our algorithm exploits the interplay between protein backbone kine-
matics and the global orientational restraints derived from RDC data to natu-
rally discretize the conformation space by polynomial-root solutions, and repre-
sents the candidate conformations using a tree. A systematic depth-first search of
the conformation tree is used to enumerate all possible loop conformations that
are consistent with the data. pool uses efficient pruning strategies (Section 2.6)
capable of pruning the majority of the conformations that are provably not part
of a valid loop, thereby achieving a huge reduction in the search space. Unlike
other algorithms, e.g. [4], that attempt to compute backbone structure using
as many as 15 RDCs per residue recorded in two alignment media, our algo-
rithm uses as few as 2 RDCs per residue in one alignment medium, which is
often experimentally feasible. As we will show in Section 3.2, when given the
same data, our algorithm performs better than traditional SA/MD-based ap-
proaches, e.g., [51]. Additional RDCs, and other data that provide constraints
in torsion-angle space (e.g., talos [14,53] dihedral restraints) or in Euclidean
space (e.g., sparse NOEs), whenever available, can directly be incorporated into
our algorithm. In summary, we make the following contributions in this paper:

1. Derivation of quartic equations for backbone dihedrals φ and ψ from experi-
mentally-recorded RDC sphero-conics and backbone kinematics, that can be
solved exactly and in closed form;

2. Systematic search of the roots of the polynomial equations that encode the
conformations, using efficient pruning methods to prune the vast majority
of conformations;

3. Design and implementation of an efficient algorithm to determine the loop
conformations from a limited amount of experimental RDC data;
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Table 1. A φ-defining RDC is used to compute the backbone dihedral φ, and a ψ-
defining RDC is used to compute the backbone dihedral ψ exactly and in closed form.

φ-defining RDC Cα-Hα, Cα-C′, Cα-Cβ

ψ-defining RDC N-HN, C′-N, C′-HN

4. Promising results from the application of our algorithm both on experimental
NMR data sets for four proteins, and on simulated data sets for protein loops
studied previously in [36,17,8].

2 Theory and Methods

2.1 Overview

pool solves the following loop closure problem. Let the residues of the protein
be numbered from 1 to n (from N- to C-terminus). Suppose the global fold of
the protein has been determined from RDCs in a principal order frame (POF)
of RDCs, as we showed was feasible in [66,68,19,72,71]. In principle, the global
fold of proteins could also be computed using protein structure prediction [2], or
homology modeling [33,34]; alternatively, X-ray structures (with missing loops)
can be used. Given two consecutive SSEs with n1 and n2 being the last residue of
the first SSE and first residue of the second SSE, respectively, the missing loop
[n1, n2] is defined as the fragment between residues n1 and n2 with both end
residues included. The residues n1 and n2 that are part of the SSEs will be called
the stationary anchors, and those of a candidate loop will be called the mobile
anchors. We assume that the n1 mobile anchor of the loop is attached to the n1

stationary anchor of the first SSE. Then the loop closure problem is stated as fol-
lows: in the POF, given the poses of the stationary anchors n1 and n2 (points in
R3 × SO(3)), compute a complete set of conformations of fragments [n1, n2] so
that n2 mobile anchor of each fragment in the set assumes the pose of the sta-
tionary anchor n2, while satisfying the RDC data and standard protein geometry.

Our algorithm builds upon the initial work from our lab [19,68,72,71], where
the authors developed polynomial time algorithms to compute high-resolution
backbone global fold de novo from N-HN and Cα-Hα RDCs in one alignment
medium. These sparse-data algorithms have been extended to incorporate combi-
nations of different types of RDCs (see Table 1) in one or two alignment media.
The new generalized framework is called rdc-analytic [72,71]. pool imple-
ments a novel algorithm to determine protein loop backbone structures from
minimal amount of RDC data, and is a crucial addition to the rdc-analytic
suite, which did not compute loops before.

Table 1 describes the RDC types that pool uses to compute the backbone
dihedrals exactly and in closed form (Section 2.3). A φ-defining RDC is used to
compute the backbone dihedral φ, and a ψ-defining RDC is used to compute the
backbone dihedral ψ. The input data to pool include: (1) the global fold of the
protein computed by [68,19,72]; (2) the alignment tensor, which generally can
be computed from the global fold using [37,66]; (3) at least one φ-defining and
one ψ-defining RDCs per residue, and optionally other data, e.g., talos [14,53]
dihedral restraints and sparse NOEs; and (4) the primary sequence of the protein.
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Fig. 1. (a) An example conformation tree. (b) The internuclear vectors (shown using
arrows) for which RDCs are possible to measure. The magenta and red arrows represent
φ-defining and ψ-defining RDCs, respectively. (c) The pringle-shaped RDC sphero-
conic curves inscribed on a unit sphere constrain the internuclear vector v (green
arrow) to lie on one of them. The kinematic circle (shown in blue almost edge-on) of
v intersects the sphero-conic curves in at most four points (green dots) leading to a
maximum of four possible orientations for the internuclear vector v.

Solving a system of equations from RDCs, protein kinematics and loop clo-
sure constraints simultaneously is a difficult computational problem since it leads
to solving a high-degree polynomial system. However, since RDCs are very pre-
cise measurements, an algorithm which is able to compute protein fragments
by inductively solving low-degree polynomial equations derived from RDCs and
backbone kinematics, and drives the computation to satisfy the loop closure cri-
terion, will achieve the desired objective. Our algorithm pool is based on this
key insight. Starting from a stationary anchor, it solves each DOF sequentially
using the equations derived in Sections 2.3 and 2.4. The discrete values of the
DOFs computed from the polynomial roots, are represented by a conformation
tree grown recursively as we solve for the DOFs progressively. An internal (i.e.,
non-leaf) node in the tree represents the conformation of a part of a candidate
loop, and a leaf node represents a candidate loop conformation computed from
RDCs. Figure 1 (a) illustrates a conformation tree for a loop. As each node is vis-
ited in a depth-first traversal of the tree, if the conformation represented by that
node fails the conformation filters (Section 2.6), it is called a dead-end node,
and the sub-tree rooted at that node is pruned. Dead-end nodes identified at
lower levels (i.e., closer to the root) of the conformation tree prune more confor-
mations than those identified at higher levels. Finally, all remaining unpruned
conformations (leaf nodes) already close to the stationary anchor (since they
satisfy the reachability criterion; see Section 2.6), are evaluated for loop closure.
At this stage minimization techniques can be applied to improve the closure.
Conformations satisfying the closure criterion are added to the final ensemble of
loops. pool enumerates all loop conformations that satisfy the RDC data and
pass the conformation filters; therefore, it guarantees completeness.

2.2 RDC Sphero-Conics

The residual dipolar coupling r between two spin- 1
2 nuclei a and b is given by

r = DmaxvTSv, (1)
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where v is the unit internuclear vector between a and b, Dmax is the dipo-
lar interaction constant, S is the Saupe order matrix [49], or alignment tensor,
that specifies the ensemble-averaged anisotropic orientation of the protein in the
laboratory frame. S is a 3 × 3 symmetric, traceless, rank 2 tensor with five
independent elements [57,58,43,19]. The constant Dmax is given by

Dmax =
µ0~γaγb

4π2

〈
r−3
ab

〉
, (2)

where µ0 is the magnetic permeability of vacuum, ~ is Planck’s constant, γa and
γb are the gyromagnetic ratios of the nuclei a and b, respectively, and

〈
r−3
ab

〉
rep-

resents the vibrational ensemble-averaged inverse cube of the distance between
the two nuclei. Letting Dmax = 1 (i.e., scaling the RDCs appropriately), and
considering a global coordinate frame that diagonalizes the alignment tensor S,
often called the principal order frame (POF), Eq. (1) can be written as

r = Sxxx
2 + Syyy

2 + Szzz
2, (3)

where Sxx, Syy and Szz are the three diagonal elements of a diagonalized align-
ment tensor S, and x, y and z are, respectively, the x, y and z components of the
unit vector v in a POF that diagonalizes S. Since v is a unit vector, i.e.,

x2 + y2 + z2 = 1, (4)

an RDC constrains the corresponding internuclear vector v to lie on the intersec-
tion of a concentric unit sphere (Eq. (4)) and a quadric (Eq. (3)) [44]. This gives a
pair of closed curves inscribed on the unit sphere that are diametrically opposite
to each other (see Figure 1 (b), (c)). These curves are known as sphero-conics or
sphero-quartics [9,47].

Using Eq. (4) in Eq. (3), we can rewrite Eq. (3) in the following form:

ax2 + by2 = c, (5)

where a = Sxx − Szz, b = Syy − Szz, and c = r − Szz. Henceforth, we refer to
Eq. (5) as the reduced RDC equation. For background on RDCs and RDC-based
structure determination, the reader is referred to [57,58,43,19].

2.3 Analytic Solutions for Peptide Plane Orientations from
φ-defining and ψ-defining RDCs in One Alignment Medium

The derivation below assumes standard protein geometry, which is exploited
in the kinematics [66]. We choose to work in an orthogonal coordinate system
defined at the peptide plane Pi with z-axis along the bond vector N(i)→ HN(i),
where the notation a→ b means a vector from the nucleus a to the nucleus b. The
y-axis is on the peptide plane i and the angle between y-axis and the bond vector
N(i)→ Cα(i) is fixed. The x-axis is defined based on the right-handedness. Let
Ri,POF denote the orientation (rotation matrix) of Pi with respect to the POF.
Then R1,POF denotes the relative rotation matrix between the coordinate system
defined at the first residue of the current SSE and the principal order frame.
Ri,POF is used to derive Ri+1,POF inductively after we compute the dihedral angles
φi and ψi. Ri+1,POF, in turn, is used to compute the (i+ 1)st peptide plane.
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Proposition 1. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, and a φ-defining RDC r for the corresponding internu-
clear vector of residue i, there exist at most 4 possible values of the dihedral angle
φi that satisfy the RDC r. The possible values of φi can be computed exactly and
in closed form by solving a quartic equation.

Proof. Let the unit vector v
0

= (0, 0, 1)T represent the N-HN bond vector of
residue i in the local coordinate frame defined on the peptide plane Pi. Let
v

1
= (x, y, z)T denote the internuclear vector for the φ-defining RDC for residue

i in the principal order frame. We can write the forward kinematics relation
between v0 and v1 as follows:

v1 = Ri,POF Rl Rz(φi) Rr v0 . (6)

Here Rl and Rr are constant rotation matrices that describe the kinematic
relationship between v

0
and v

1
. Rz(φi) is the rotation about the z-axis by φi.

Let c and s denote cosφi and sinφi, respectively. Using this while expanding
Eq. (6) we have

x = A0 +A1c+A2s, y = B0 +B1c+B2s, z = C0 + C1c+ C2s, (7)

in which Ai, Bi, Ci for 0 ≤ i ≤ 2 are constants. Using Eq. (7) in the reduced
RDC equation Eq. (5) and simplifying we obtain

K0 +K1c+K2s+K3cs+K4c
2 +K5s

2 = 0, (8)

in which Ki, 0 ≤ i ≤ 5 are constants. Using half-angle substitutions

u = tan(
φi
2

), c =
1− u2

1 + u2
, and s =

2u

1 + u2
(9)

in Eq. (8) we have

L0 + L1u+ L2u
2 + L3u

3 + L4u
4 = 0, (10)

in which Li, 0 ≤ i ≤ 4 are constants.
Eq. (10) is a quartic equation which can be solved exactly and in closed form.

Let {u1, u2, u3, u4} denote the set of (at most) four real solutions of Eq. (10).
For each ui, the corresponding φi value can be computed using Eq. (9). ut
Proposition 2. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, the dihedral φi, and a ψ-defining RDC r for the corre-
sponding internuclear vector on peptide plane Pi+1, there exist at most 4 possible
values of the dihedral angle ψi that satisfy the RDC r. The possible values of ψi
can be computed exactly and in closed form by solving a quartic equation.

Proof. The proof is provided in the supporting information (SI) Appendix A
available online [61]. ut
Proposition 3. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, a φ-defining RDC and a ψ-defining RDC for φi and
ψi, respectively, there exist at most 16 orientations of the peptide plane Pi+1

with respect to Pi that satisfy the RDCs.

Proof. This follows directly from Proposition 1 and Proposition 2. ut
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2.4 Analytic Solutions for the φ Angle of Glycine from Cα-Hα RDC

The amino acid residue glycine (Gly) has two Hα atoms which we denote by
Hα2 and Hα3 , respectively. The Cα-Hα RDC measured for Gly is the sum of the
RDCs for these two bond vectors. We show that given the Cα-Hα RDC for a
Gly residue we can compute all possible solutions for the dihedral φ.

Proposition 4. Given the diagonalized alignment tensor components Sxx and
Syy, the peptide plane Pi, and the Cα-Hα RDC r for residue i which is a glycine,
there exist at most 4 possible values of the dihedral angle φi that satisfy the Cα-Hα

RDC r. The possible values of φi can be computed exactly and in closed form by
solving a quartic equation.

Proof. The proof is provided in the SI Appendix B available online [61]. ut

2.5 Sampling the DOFs when RDCs are Missing

Theoretically, for a loop with n (> 6) DOFs, n− 6 DOFs are redundant. There-
fore, n− 6 equality constraints are necessary to solve for the loop conformations
so that the number of conformations is discrete. We systematically sample (at 5◦

resolution) the dihedrals from the Ramachandran map (and talos dihedral re-
straints if available) for the DOFs for which RDCs are missing, and use analytic
equations to solve for the other dihedrals for which RDCs are available, to com-
pute an ensemble of loops complete to the resolution of sampling. If RDCs can
be recorded for the missing ones in a second alignment medium, pool can use
them (see the online SI Appendix C [61]). Table 2 shows that when as many
as 5 RDCs are missing in a loop, pool still could compute the loops accurately.

2.6 Pruning with Conformation Filters

Loop conformations are generated by traversing a conformation tree in a depth-
first search order (Section 2.1). At each node, conformation filters are applied as
predicates. If the node passes all the filters, then the subtree rooted at that node
is visited; otherwise, the subtree is pruned. Failing a predicate at lower levels
(closer to the root) of the conformation tree prunes more conformations than
that detected at higher levels (farther from the root). In fact, pruning at depth i
eliminates O(bn−i) conformations, where b is the average number of branches in
the conformation tree, and n is the height of the conformation tree. For loops
with constrained work-space, substantial pruning can be achieved resulting in
significant speedup. pool uses the following conformation filters.

Real Solution Filter. While solving the equations derived in Sections 2.3
and 2.4 to compute the dihedrals, all non-real roots with the imaginary parts
greater than a chosen threshold are discarded [72]. Also, multiplicities of the roots
are eliminated, thereby pruning the subtrees rooted at the eliminated-roots.

Ramachandran and talos Filters. There exist regions in the Ramachandran
map (Rama-map) that are forbidden for any biophysically relevant (φ, ψ) values
for a given residue type. Therefore, any disallowed value for a dihedral suggested
by the Rama-map, whenever it appears in the conformation tree, is pruned. We
used the data from [38], and implemented a residue-specific Ramachandran filter.
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Our implementation considers four residue types: Gly, Pro, pre-Pro, and other
general amino acid types (called general). It has been specifically optimized for
O(1)-time queries for the favored or allowed intervals for φ, and ψ given φ. If MT

is the Rama-map for residue type T , and IT is the set of all allowed φ-intervals
for T , we evaluate if φ ∈ IT for a computed φ. Similarly, when a ψ is computed,
we evaluate if ψ ∈ IT |φ. talos [14,53] dihedral information, whenever available,
are used as follows. If for the dihedral φi of the residue i of type T , IL is the
talos-predicted interval, then for a computed φ for the residue i, we evaluate
if φ ∈ IT ∩ IL . Similarly, for a computed ψ, the predicate ψ ∈ IT |φ ∩ IL is
evaluated. The subtree rooted at the node representing the dihedral is pruned if
any of these predicates fail. Further, in the absence of RDC data for a dihedral,
finite-resolution uniform sampling of the Rama-map is used for that dihedral.

Steric Filter. We use our in-house implementation of the steric checker similar
to that in [70]. During the depth-first search of the conformation tree, at each
node corresponding to a newly added residue, the steric check is performed for
(i) self-collision, i.e., if the fragment clashes with itself, and (ii) collision with the
rest of the protein. If the clash score [70] is greater than a user-defined threshold,
then the branch is pruned and the search backtracks.

Reachability Criterion. As each node of the conformation tree is visited, we
test if the rest of the fragment, if grown using the best possible kinematic chain,
can ever reach the stationary anchor. The node is pruned if this test fails. For
long loops, this test prunes a large fraction of conformations, especially at the
tree nodes at higher level (farther from the root).

Closure Criterion. When the distance between the mobile anchor (i.e., the
conformation at a leaf node), and the stationary anchor is less than a user-
specified threshold (chosen to be 0.2 Å), called the closure distance, and defined
as the root-mean-square distance between the N, Cα and C′ atoms of the mo-
bile anchor and stationary anchor, the conformation is accepted and added to
the ensemble of computed loops. Otherwise, the conformation is subject to a
gradient-descent minimization over the last few dihedrals to improve the closure
distance to below 0.2 Å while maintaining the user-defined RDC RMSD thresh-
olds. If after minimization the closure is achieved, the conformation is accepted;
otherwise, rejected. The RDC RMSD between back-computed and experimental

RDCs is computed using the equation RMSDx =
√

1
n

∑n
i=1(rbx,i − rex,i)2, where

x is either a φ-defining or a ψ-defining RDC type, n is the number of RDCs, rex,i
is the experimental RDC, and rbx,i is the corresponding back-computed RDC.

Pruning using unambiguous NOEs. When unambiguous backbone NOEs
are available, they can be used as predicates to prune unsatisfying conformations.

3 Results and Discussion

To study the effectiveness of our algorithm, we applied it on experimental NMR
data sets for four proteins. Further, to study the robustness of our algorithm to
the variations in standard peptide geometry, we tested it on synthetic datasets for
three sets of canonical loops of length 4, 8 and 12 residues that were investigated
by three other protein loop closure algorithms [8,17,36].
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Table 2. (a) The anchor residues are always included. (b) number of residues. (c) ex-
perimental RDCs used. The Cα-Hα, Cα-C′ and N-HN RDC RMSDs of loops computed
by pool are less than 2.0, 0.2 and 1.0 Hz, respectively. (d) Missing means unavailable.
(e) Backbone RMSD computed vs. the NMR reference loops. The results show that the
loops computed by pool are more accurate than those computed by xplor-nih [51].

Protein Loopa Lengthb Types of RDCsc RDCs missingd RMSDe (Å) RMSDe (Å)
(pool) (xplor-nih)

Ubiquitin 7-12 6 Cα-Hα, N-HN 2 0.64 1.40

Ubiquitin 17-23 7 Cα-Hα, N-HN 2 0.60 2.25

Ubiquitin 33-41 9 Cα-Hα, N-HN 2 0.89 2.07

Ubiquitin 45-48 4 Cα-Hα, N-HN 0 0.27 1.58

Ubiquitin 50-65 16 Cα-Hα, N-HN 2 0.66 3.94

Ubiquitin 7-12 6 Cα-C′, N-HN 3 0.37 0.67

Ubiquitin 17-23 7 Cα-C′, N-HN 3 0.60 3.54

Ubiquitin 33-41 9 Cα-C′, N-HN 5 0.58 3.11

Ubiquitin 45-48 4 Cα-C′, N-HN 0 0.11 1.02

Ubiquitin 50-65 16 Cα-C′, N-HN 4 1.06 4.48

FF2 18-27 10 Cα-Hα, N-HN 3 1.41 3.20

FF2 33-38 6 Cα-Hα, N-HN 3 0.34 1.09

FF2 42-48 7 Cα-Hα, N-HN 4 1.31 2.14

DinI 8-17 10 Cα-Hα, N-HN 5 1.57 4.17

DinI 32-39 8 Cα-Hα, N-HN 3 0.61 3.45

DinI 45-49 5 Cα-Hα, N-HN 2 0.28 2.27

DinI 53-58 6 Cα-Hα, N-HN 2 0.42 2.62

GB3 8-13 6 Cα-Hα, N-HN 0 0.43 1.07

GB3 19-23 5 Cα-Hα, N-HN 0 0.34 0.23

GB3 36-42 7 Cα-Hα, N-HN 1 0.27 1.34

GB3 46-51 6 Cα-Hα, N-HN 0 0.65 3.61

Fig. 2. Overlay of the loops (green) of ubiquitin computed by pool using Cα-Hα and
N-HN RDCs vs. the corresponding loops (red) in the NMR reference structure (1d3z
model 1) without any structural alignment.

3.1 Tests on Experimental NMR Data

We applied pool to compute the loops of four proteins: FF2 (PDB id: 2kiq) [72],
human ubiquitin (PDB id: 1d3z) [15], the DNA damage inducible protein I (DinI)
(PDB id: 1ghh) [45], and the third IgG-binding domain of Protein G (GB3) (PDB
id: 2oed) [62]. The RDC data for FF2 was recorded using Varian 600 and 800
MHz spectrometers at Duke University. Details of the NMR experimental pro-
cedures are provided in the SI Appendix D available online [61]. For ubiquitin,
DinI and GB3, NMR data were obtained from BioMagResBank (BMRB) [63].
For each of these proteins, we used the NMR model 1 with loops removed as the
respective test structures. RDCs were perturbed within the experimental-error
window [66] to account for experimental errors.

Table 2 summarizes the results computed by pool. For ubiquitin we used
two different combinations of RDCs, viz. (Cα-Hα, N-HN) and (Cα-C′, N-HN) to
test the performance of our algorithm on different types of RDC data. In most
cases, sub-angstrom RMSD loops were computed by pool. Figure 2 shows the



12 Chittaranjan Tripathy, Jianyang Zeng, Pei Zhou, and Bruce Randall Donald

overlay of the loops computed for ubiquitin using Cα-Hα and N-HN RDCs with
the corresponding loops from the NMR reference structure. For FF2, DinI and
GB3, the results show that pool is able to compute accurate loops when as
many as 5 RDCs are missing.

The run-time analysis of pool is similar to that in [68]. In practice, for short
loops, pool runs in minutes, and for longer loops (e.g., ubiquitin 50-65) it runs
in hours on a 2.5 GHz dual-core processor Linux workstation.

3.2 Comparison vs. Traditional Structure Determination Protocols

To investigate whether traditional SA/MD-based structure determination proto-
cols can compute accurate loop conformations using sparse data, we ran xplor-
nih [51] on the same input used by pool for ubiquitin, FF2, DinI and GB3.
Table 2 summarizes the results. In Figure 3, a comparison is made between the
results obtained by applying pool versus those obtained by applying xplor-nih.
The loops computed by pool have much smaller (3- to 6-fold less for longer
loops) backbone RMSD vs. the reference structures than those computed using
xplor-nih. For example, for ubiquitin loop 50-65, the loop computed by pool
has backbone RMSD 0.66 Å, a 6-fold decrease vs. the loop computed by xplor-
nih (3.94 Å). This shows that when given sparse data, our algorithm is able to
compute more accurate loop conformations than the SA/MD-based protocols.

Fig. 3. pool-computed loops achieve up to 6–
fold improvement in backbone RMSD compared
to xplor-nih-computed loops.

Fig. 4. Overlay of the lowest
RMSD loop (green) computed by
pool for 4, 8 and 12-residue loops
vs. the X-ray structures of the
reference loops (red) without any
structural alignment.

3.3 Comparison with Loop Prediction Algorithms

We compared the performance of pool with three other loop prediction algo-
rithms including the ccd method by Canutescu and Dunbrack [8], the csjd
algorithm by Coutsias et al. [17], and the self-organizing superimposition (sos)
algorithm by Liu et al. [36]. Unlike these algorithms, which do not use any data,
pool is a sparse data-driven algorithm. While ccd, csjd and sos algorithms
have applications in protein structure prediction, none of them is specifically
designed to incorporate geometric restraints from experimental NMR data. Our
algorithm pool provides an approach to fill this gap by being able to compute
loops using sparse NMR data, specifically, RDCs.

In our study, we used the same test set as in [36,17,8]. This set consists of 10
loops each with 4, 8 and 12 residues long chosen from a set of nonredundant X-ray
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Table 3. The minimum RMSD (Å) from X-ray structures for these four algorithms.
The loops computed by pool using only one φ-defining and one ψ-defining RDC per
residue simulated using an alignment tensor estimated using PALES [76,75]. sos, csjd
and ccd results were obtained from Table 1, Table 1 and Table 2 of [36], [17] and [8],
respectively. These three methods do not use any experimental NMR data.

4-residue loops 8-residue loops 12-residue loops

Loop pool sos csjd ccd Loop pool sos csjd ccd Loop pool sos csjd ccd
1dvjA 20 0.74 0.23 0.38 0.61 1cruA 85 0.72 1.48 0.99 1.75 1cruA 358 1.54 2.39 2.00 2.54
1dysA 47 0.25 0.16 0.37 0.68 1ctqA 144 0.91 1.37 0.96 1.34 1ctqA 26 0.65 2.54 1.86 2.49
1eguA 404 0.42 0.16 0.36 0.68 1d8wA 334 0.28 1.18 0.37 1.51 1d4oA 88 1.83 2.44 1.60 2.33
1ej0A 74 0.18 0.16 0.21 0.34 1ds1A 20 0.70 0.93 1.30 1.58 1d8wA 46 0.93 2.17 2.94 4.83
1i0hA 123 0.27 0.22 0.26 0.62 1gk8A 122 0.87 0.96 1.29 1.68 1ds1A 282 1.50 2.33 3.10 3.04
1id0A 405 0.63 0.33 0.72 0.67 1i0hA 122 0.45 1.37 0.36 1.35 1dysA 291 0.76 2.08 3.04 2.48
1qnrA 195 0.47 0.32 0.39 0.49 1ixh 106 0.68 1.21 2.36 1.61 1eguA 508 1.25 2.36 2.82 2.14
1qopA 44 0.36 0.13 0.61 0.63 1lam 420 0.42 0.90 0.83 1.60 1f74A 11 0.76 2.23 1.53 2.72
1tca 95 0.12 0.15 0.28 0.39 1qopB 14 0.87 1.24 0.69 1.85 1qlwA 31 1.27 1.73 2.32 3.38
1thfD 121 0.25 0.11 0.36 0.50 3chbD 51 0.96 1.23 0.96 1.66 1qopA 178 0.87 2.21 2.18 4.57
Average 0.37 0.20 0.40 0.56 Average 0.69 1.19 1.01 1.59 Average 1.14 2.25 2.34 3.05

crystallographic structures from the PDB. Since there is no experimental RDC
data available for these proteins, we simulated the RDCs using pales [76,75].
Details of the RDC simulation are described in the SI Appendix E available
online [61]. The alignment tensor, the RDC data, and the two anchor peptide
planes of the loop were used by pool to compute the loop conformations.

Table 3 summarizes the results for pool, ccd, csjd and sos algorithms. In
Figure 4, examples of minimum RMSD loop conformations determined by pool
are shown. For 4-residue loops the average minimum RMSD of the computed
loops by pool is larger than that for sos, but smaller than that for csjd and ccd.
This can be explained by the fact that sos allows slight deviations from standard
protein geometry. For 8 and 12-residue loops pool computes more accurate loops
than other algorithms. For example, for 12-residue loops, the average minimum
RMSD of the loops are 1.14, 2.25, 2.34 and 3.05 Å for pool, sos, csjd and
ccd, respectively, which shows a 2-fold improvement in accuracy by pool. For
five of these loops, pool computed loops with sub-angstrom accuracy. Further,
the reference loops in Table 3 have deviations from standard protein geometry;
therefore, the RDCs simulated on them inherits these deviations, in addition
to a Gaussian noise of 1 Hz added to account for experimental errors. These
results suggest that pool is robust to both experimental uncertainties in RDCs,
and minor deviations from standard protein geometry assumptions. Therefore,
pool can be useful to compute longer loops with high accuracy using a minimal
amount of RDC data.

4 Conclusions

While the global fold of a protein can often be determined from experimental
NMR data [25,66,68,72,71], determining loop conformations from sparse exper-
imental RDCs is a difficult problem. We described a novel, efficient, and practi-
cal deterministic algorithm, pool, that determines accurate loop conformations
from sparse RDC data. Empirical comparison with traditional structure deter-
mination protocols [51] demonstrates that pool is able to achieve up to 6-fold
improvement over the latter methods under sparse-data settings.
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Since an accurate and complete protein backbone is a prerequisite for NOE-
assignment algorithms [28,72] and side-chain resonance assignment methods [74]
in traditional NMR structure determination protocols, pool will be useful in
high-resolution protein structure determination. Whenever RDCs can be col-
lected for proteins with known X-ray structures containing missing loops, pool
can be used to determine the loop conformations.

Since RDCs also provide sensitive probes to protein conformational dynam-
ics [59,48] over nano- to millisecond timescales, it will be interesting to extend
our algorithm to capture and characterize the motional fluctuations, and decon-
volve the dynamics from measured RDCs. In such cases, the ensemble of loops
computed by pool will effectively define a normal distribution of conformations
centered at the experimentally-measured RDCs, and as such encode a unimodal
dynamic ensemble about a protein’s native fold. Our algorithm can even be a
stepping stone to computing ensembles reflecting more complex dynamics.

Availability. The source code of our algorithm is available open-source under
the GNU Lesser General Public License (Gnu, 2002).
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