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1 Summary of Supplementary Information Material
Protein design algorithms that compute binding affinity search for sequences with an energetically fa-

vorable free energy of binding. Recent work shows that the biological accuracy of such protein designs is
improved by the following design principles: ensemble-based design and continuous conformational flexi-
bility. Unlike many algorithms, which compute only the Global Minimum Energy Conformation (GMEC),
ensemble-based algorithms capture entropic contributions to binding by approximating Ka as the ratio of
bound to unbound state partition functions over molecular ensembles. And, compared to conventional pro-
tein designs, which fix the backbone and limit side-chain flexibility to discrete, rigid rotational isomers
(i.e. rotamers), design with backbone flexibility and continuous side-chain rotamers better accounts for
conformational changes induced by amino acid and rotamer substitutions during design. A third design
principle, provable guarantees of accuracy, ensures that an algorithm computes the best sequences defined
by the input model (i.e. input structures, energy function, and allowed protein flexibility). Although model-
ing ensembles and continuous flexibility consequentially improves the predictive power of protein designs,
previous provable methods model these phenomena at significant cost to both empirical and asymptotic run-
time. Furthermore, previous provable methods are single-sequence algorithms, which require (a) separate
analysis of each sequence’s conformation space and (b) exhaustive enumeration of all possible sequences.
Exhaustive enumeration, the current state of the art, is very costly: linear in the number of sequences and thus
exponential in the number of mutable residues, making the approach computationally intractable for large
sequence spaces. To address these computational challenges, we introduce a new protein design algorithm,
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BBK∗, that retains all aforementioned design principles yet provably and efficiently computes the tightest
binding sequences without exhaustively searching all possible sequences. A key innovation of BBK∗ is the
multi-sequence (MS) bound: rather than compute binding affinity separately for each possible sequence,
as single-sequence methods do, BBK∗ efficiently computes a single provable upper bound to approximate
Ka for a combinatorial number of sequences. BBK∗ uses MS bounds to prune a combinatorial number
of sequences during the search, entirely avoiding single-sequence computation for all pruned sequences.
This combinatorial pruning produces a significant empirical runtime speedup: BBK∗ runs in time sub-linear
in the number of sequences. To our knowledge, BBK∗ is the first provable ensemble-based algorithm to
do so. Computational experiments on 204 protein design problems showed that BBK∗ finds the tightest
binding sequences while approximating Ka for up to 105-fold fewer sequences than the previous state-of-
the-art algorithms, which require exhaustive enumeration of sequences. Furthermore, in 51 protein-ligand
design problems, we showed that BBK∗ provably approximates Ka up to 1982-fold faster than the previous
state-of-the-art iMinDEE/A∗/K∗ algorithm. Therefore, BBK∗ not only accelerates protein designs that are
possible with previous provable algorithms, it also efficiently performs designs that are too large for previous
methods.

2 Supplementary Introduction
Protein design is the prediction of protein sequences with desired biochemical functions, which often

involve binding to a target ligand. Computational protein design casts the functional design problem into
a structural optimization problem whose goal is to find amino acid sequences that fold into a specified
three-dimensional structure. Protein design algorithms search a space defined by a biophysical input model,
which defines the sequence and structural search space (i.e. the input structure, allowed amino acid muta-
tions, and allowed protein flexibility), the optimization objective (e.g. design for binding affinity), and the
energy function [2]. Protein design algorithms [7, 11] have successfully predicted protein sequences that
fold and bind desired targets in vitro and in vivo. For example, these algorithms have been used, with exper-
imental validation, to predict drug resistance [9, 38, 43] and design enzymes [4, 15, 34, 53], new drugs [21],
inhibitors of protein-protein interactions [17, 44], epitope-specific antibody probes [14], and neutralizing
antibodies [19, 47].

Computational methods can potentially search a large number of sequences to predict the proteins that
most tightly bind a target ligand in less time and with fewer resources than in vitro methods such as phage
display [3,40]. However, four computational challenges have prevented protein design algorithms from real-
izing this potential. First, for each binding interface, an exponentially large number of conformations in each
binding partner’s ensemble must be pruned or considered to accurately predict binding affinity [7,17,20,34].
Second, for each sequence, finding the lowest energy conformations that most influence binding affinity is
NP-hard [28,41,42,59,60], making algorithms that guarantee optimality expensive for larger designs. Third,
mutating a protein sequence (as many algorithms do) induces conformational changes in the protein struc-
ture. Since such conformational changes occur over many continuous degrees of freedom, algorithms that
model continuous flexibility must search over a large, continuous conformation space. Fourth, the number
of protein sequences (i.e. the sequence space) grows exponentially with the number of simultaneously mu-
table residues in the design. Therefore, previous algorithms either focus on accurately modeling smaller
designs or attempt larger designs by making simplifications that (a) ignore the ensemble nature of proteins,
(b) disregard continuous conformational flexibility, or (c) return heuristic solutions with no guarantees. A
discussion of these simplifications and their ramifications for protein design follows.

Global Minimum Energy Conformation (GMEC)-based algorithms [6, 12, 22, 45, 57] assume that the
lowest energy conformation accurately predicts binding affinity. However, GMEC-based design ignores
the reality that proteins at physiological conditions exist as thermodynamic ensembles, whose very nature
governs binding [20]. Therefore, GMEC-based designs cannot accurately model entropic change due to
binding [8] and can disproportionately favor sequences with energetically favorable GMECs over sequences
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with tight binding affinity [4,17,34,44,48]. In fact, recent studies show that ensemble-based binding predic-
tions more closely correlate with in vitro binding measurements than do GMEC-based predictions [44, 51].

Although protein flexibility plays a key role in binding, many protein design algorithms [31,52,54,55,57]
rely on a simplified, discrete model of side-chain flexibility. Widely used due to computational convenience,
the discrete model abstracts frequently observed low-energy regions of χ-angle space, known as rotamers, to
single points. However, discrete rotamers model a small subset of protein energetics, which are sensitive to
small atomic movements not permitted by the discrete model. To overcome this limitation, researchers have
developed provable algorithms [12, 17, 23, 24, 44, 45] that incorporate continuous rotamers [12, 17], which
model continuous flexibility in the low-energy torsional regions around discrete rotamers. The DEEPer
algorithm [25] generalizes continuous rotamers by modeling coupled continuous backbone and side-chain
flexibility. Despite numerous recent algorithmic improvements [23, 24, 45], protein design with continuous
rotamers incurs some computational overhead. Nevertheless, continuous rotamers more accurately repre-
sent side-chain conformation space, clearly finding conformations with lower energies than those found
using discrete rotamers [11,12]. Furthermore, continuous rotamers improved the biological accuracy of de-
signs [44], finding sequences more similar to native sequences than those found with discrete rotamers [12].
These results suggest that continuous side-chain flexibility is necessary for more accurate design predictions.

Another important aspect of design algorithms is the quality of the computed results. Whereas GMEC-
based design is NP-hard [28,42,59,60], computation of thermodynamic ensembles and associated partition
functions is #P-hard [37, 56, 57]. Provable protein design algorithms either return the optimal sequences
or conformations [6, 12, 25, 30, 45, 52, 54, 55, 57] with respect to the input model, or return provably good
approximate solutions [17, 23, 24, 34, 44]. Non-provable algorithms such as Metropolis Monte Carlo meth-
ods [29, 31, 32] instead use stochastic methods to rapidly sample the space described by the input model.
These algorithms are popular for their speed, ease of implementation, and amenability to complex input
models (i.e. backbone flexibility [25, 39] and dense rotamer libraries [49, 50]) but return solutions without
any guarantees. Indeed, a recent large-scale study [52] showed that a popular non-provable simulated an-
nealing algorithm [31] computed the best sequence for fewer than 30% of the smallest design problems and
consistently failed to compute the best sequence in all large design problems.

Thus, the predictive power of protein design algorithms is improved when the following design princi-
ples are incorporated: ensemble-based design, a realistic model of structural flexibility, and provable opti-
mality of the computed sequences with respect to the input model. Although use of each design principle
increases the per-sequence cost of protein design, designs typically involve searching over a large number
of sequences. Single-sequence algorithms, which explicitly evaluate each possible sequence, are powerful
and versatile. Molecular dynamics [33,61], for instance, is frequently applied to design for binding affinity.
The approach utilizes two design principles (i.e. ensemble-based design and continuous flexibility) in our
desiderata. However, one can benefit from all three design principles and avoid the large computational cost
of simulation. The K∗ algorithm [17, 34, 44] in OSPREY [12, 13, 15–17, 22–25, 27, 34, 44, 45] uses a combi-
nation of dead-end elimination pruning [12, 17] and A∗ [26, 30, 46] gap-free conformation enumeration to
provably and efficiently approximateKa as the ratio of ε-approximate partition functions between the bound
and unbound states of a protein-ligand complex. Although K∗ is considerably more efficient than exhaus-
tive conformation enumeration for all possible sequences, K∗ and all previous provable ensemble-based
algorithms that model continuous side-chain flexibility [23, 24] are single-sequence algorithms. The empir-
ical and asymptotic runtime complexity of single-sequence algorithms is linear in the number of possible
sequences, and therefore exponential in the number of mutable residues. As the number of mutable residues
increases, the space of possible sequences increases exponentially, and designs with many mutable residues
rapidly become intractable when using single-sequence algorithms. The COMETS algorithm [22] in OSPREY

is the only provable multi-state design algorithm that computes the optimal sequences without exhaustively
searching the design sequence space. Although it supports continuous conformational flexibility, its binding
predictions are GMEC-based rather than ensemble-based.
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To efficiently search large sequence spaces while retaining all the benefits of provable guarantees,
ensemble-based design, and continuous side-chain flexibility, we present a new, provable algorithm: Branch
and Bound overK∗ (BBK∗). The key innovation of BBK∗ is the multi-sequence (MS) bound: rather than ap-
proximate binding affinity for each possible sequence, BBK∗ efficiently computes provable upper and lower
bounds on the binding affinities of partial sequences, which are shared by a combinatorial number of full
sequences. Single-sequence methods are unable to compare partial sequences. Instead, they must compute
and compare single-sequence bounds for multiple combinatorially large sets of sequences: one large set for
each partial sequence. In contrast, BBK∗ compares the partial sequences directly by computing an MS bound
for each partial sequence, and pruning provably worse partial sequences (and therefore combinatorially large
sets of full sequences) so they do not have to be searched or enumerated. In doing so, it rapidly prunes a vast
portion of the sequence space, and entirely avoids single-sequence computation for all pruned sequences.
This combinatorial pruning results in a significant empirical runtime speedup: BBK∗ runs in time sub-linear
in the number of sequences. To our knowledge, BBK∗ is the first provable, ensemble-based algorithm to
do so. BBK∗ not only avoids explicitly computing all possible sequences, but also provably enumerates
sequences in a gap-free decreasing order of binding affinity. In contrast, all previous provable ensemble-
based algorithms – including the state-of-the-art iMinDEE/A∗/K∗ algorithm [12, 17] – are single-sequence
algorithms whose running time is linear in the number of sequences in the design space. Moreover, BBK∗

performs each binding affinity calculation much more rapidly. Therefore, BBK∗ provides a vast performance
improvement over the previous state-of-the-art, by not only accelerating protein designs that were possible
with previous provable algorithms, but also efficiently handling large designs that previous algorithms could
not compute in a reasonable amount of time.

By presenting BBK∗, our paper makes the following contributions:
1. A novel, ensemble-based algorithm that provably computes the same results as the previous state of the

art (exhaustive search over sequences) but is combinatorially faster, returns a gap-free list of sequences
in decreasing order of binding affinity and runs in time sub-linear in the number of sequences.

2. Proofs of correctness for multi-sequence bounds, a key innovation in BBK∗.
3. A new two-pass bound that more efficiently computes a provable partition function ε-approximation.
4. 255 protein designs showing that BBK∗ approximates binding affinity for complete sequences up to

1982-fold faster than the best previous algorithm and that BBK∗ computes the best binding sequences
in a large sequence space up to 105-fold more efficiently than exhaustive search.

5. Support for both continuous side-chain and backbone flexibility, demonstrating the ability of BBK∗ to
handle multiple modes of protein flexibility in addition to large conformation and sequence spaces.

6. An implementation of BBK∗ in our laboratory’s open-source OSPREY [12,13,15–17,22–25,27,34,44,
45] protein design software package, available for download upon publication as free software.

3 Computing the Partition Function
To successfully design for improved binding affinity Ka, design algorithms must consider the energy of

more than just the GMEC. In particular, all algorithms that design for improved Ka optimize the ratio of
partition function Z for the bound and unbound states of the protein and ligand (Eq. 2). Protein design can
be cast as an optimization problem. For an n-residue protein design problem with at most a amino acids per
mutable residue, let P , L, and PL denote the unbound protein, unbound ligand, and bound protein-ligand
complex, respectively. For each sequence s, let Q(s) be the set of discrete rigid rotamer conformations
defined by the allowed amino acids for each mutable residue of s. For a rigid rotamer conformation c, let
EX be a pairwise energy function with respect to input structure X , which may be one of P , L, or PL. In
particular, we will consider the case of design with continuous rotamers [12, 17]. We define EX (c) to be
the energy of c for structure X after energy-minimizing the side-chains of mutable residues.
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3.1 K∗

We define the Boltzmann-weighted partition function ZX (s) as:

ZX (s) =
∑
c∈Q(s)

exp(−EX (c)/RT ). (1)

We define the K∗ score, a partition function ratio that approximates binding affinity Ka, as:

K∗(s) =
ZPL(s)

ZP (s)ZL(s)
. (2)

As stated in Sec. 2, the K∗ approximation and, by extension, the full partition function, are #P-hard
to compute [37, 56, 57]. Therefore, researchers have not only developed heuristic algorithms that rapidly
compute loose partition function bounds, but also developed efficient, provable algorithms that compute
ε-approximations to the partition function. Probabilistic algorithms bound the partition function either
provably [58] or non-provably [10]. An efficient ε-approximation to ZX (s) is computed in [17, 34, 44].
However, these methods are designed to compute partition functions for single sequences. For an n-residue
design with at most t possible amino acids at each residue and q rotamers per amino acid, provable single-
sequence methods must compute or bound the partition functions of all tn sequences, each with qn confor-
mations. Thus, previous single-sequence algorithms for protein design for binding affinity are exponential
in n (O(tn)) when computing the sequence with the best predicted binding affinity.

Therefore, to provably find the best binding sequences, new, efficient provable algorithms are needed
to search over an exponentially large sequence space, for which each sequence represents an exponentially
large conformation space. BBK∗ addresses this need. BBK∗ compares partial sequences (for which some
mutable residues have not been assigned an amino acid identity) without computing the partition functions
for all full sequences (which assign an amino acid to each mutable residue). BBK∗ computes bounds on
the free energies of partial sequences, and avoids enumerating conformations from sequences with poor
binding affinity, by pruning sequences during search. As we will describe in Sec. 4, pruning these sequences
circumvents prohibitive computational costs required to compute many single-sequence K∗ scores.

4 A∗ Search Over Sequences, with Multi-sequence (MS) bounds
It may at first seem counter-intuitive to compute the sequence with optimal binding affinity, along with

its predicted K∗ score, without explicitly computing the K∗ scores of all possible sequences. Indeed, all
previous ensemble-based provable methods, as well as many heuristic methods, are single-sequence meth-
ods: they must individually evaluate and compare each sequence to provably return the optimal sequence.
In contrast, BBK∗ bounds the K∗ ratios of a combinatorial number of sequences efficiently and can prune
these sequences without computing any single-sequence bounds. The key to this improvement is the ob-
servation that a partial sequence s′ with poor predicted binding affinity adversely affects the K∗ score of
the combinatorial set of sequences that contain s′. That is, the best possible K∗ score consistent with s′

limits the K∗ ratio of all sequences consistent with s′. Henceforth, we will refer to a bound on the binding
affinity for a sequence as a bound on the sequence. To compute a bound on all sequences consistent with s′,
BBK∗ computes the partition function for an ensemble that contains conformations from multiple sequences.
Fig. 1 illustrates the difference between single-sequence and multi-sequence ensembles. The K∗ ratio of a
multi-sequence ensemble is a provable upper bound on the best possible K∗ ratio of all sequences that con-
tain s′. We show this multi-sequence bound (MS bound) is not only cheaper to compute, but it also allows
BBK∗ to compare a combinatorial number of sequences without computing any single-sequence bounds. By
bounding every possible sequence consistent with a partial sequence, BBK∗ can provably eliminate those
sequences, and prune a combinatorial number sequences without performing any single-sequence compu-
tation. Fig. 2 illustrates the combinatorial speedup provided by MS bound pruning, whereby pruning the
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partial sequence obviates computation of all single sequences containing the partial sequence. MS bounds
are not limited to pruning based on binding affinity, however. They are also useful for pruning combinations
of sequences whose favorable K∗ scores are due to energetically unfavorable unbound states that cannot
fold into ligand-binding poses. Single-sequence methods compute binding affinity for each of these se-
quences. In contrast, BBK∗ prunes these partial sequences using MS bounds, thereby avoiding many costly
single-sequence computations. Details are provided in Appendix A.7.

Figure 1: A toy protein design problem in which conformational ensembles (A) and optimal mutations
(B) must be computed at 3 residues. Residues of the fibronectin F1 module (Fn, blue ribbon), and of a
fragment of S. aureus fibronectin binding protein A (FNBPA-5, green ribbon) are shown (PDB Id: 2RL0).
Side-chain conformations, labeled with amino acid identity, are also shown per residue. (A) Previous prov-
able methods require a fully defined sequence to compute a single-sequence (SS) ε-approximation bound on
binding affinity (i.e. a K∗ score, Eq. 2). (B) A key innovation in this paper is the multi-sequence (MS)
bound for binding affinity in protein design. An MS bound is a provable bound on the binding affinity
of a partial sequence. Unassigned residues, whose amino acid identities are not defined by the partial se-
quence, adopt side-chain conformations from multiple amino acids, shown as the blue, purple, pink, and
light blue ensemble. Thus, an MS bound is a provable upper bound on the binding affinity of all sequences
containing that partial sequence, and is obtained without computing any SS bounds. (The full analysis of
the Fn:FNBPA-5 design problem is described in Sec. 5.3.)

The improvement of BBK∗ over single-sequence methods can be measured using cost per sequence.
We show the improvement is threefold: BBK∗ (a) reduces the cost to compute a bound on a combinatorial
number of sequences, (b) eliminates all computational costs once a sequence is pruned, and (c) when it
must compute a bound for a single sequence, computes a bound that is in many cases cheaper than the
bounds computed by previous single-sequence algorithms. To guarantee that the first sequence returned
is optimal, an algorithm must either compute or bound the partition function for all possible sequences.
Previous provable algorithms compute a provable single-sequence bound of the partition function, called
an ε-approximation (SS-ε bound), for each sequence [17, 34, 44]. These SS-ε bounds are guaranteed to be
within a user-specified ε of the K∗ score for a sequence. BBK∗ also provably returns the optimal sequences,
but does so without enumerating all possible sequences. Instead of SS-ε bounds, BBK∗ computes an MS
bound, which is an upper bound on the best possible K∗ score of multiple sequences that share a common
partial sequence.

We will now compare the cost of bounding sequences with single-sequence algorithms to the cost with
BBK∗. Consider an n-residue protein design: we are given an initial partial sequence s′, which fixes amino
acid identity (but not the rotamer) for a residues, and u residues do not have a fixed amino acid identity
(a + u = n). If the design problem allows at most t amino acids per unassigned (u) residue and at most q
rotamers for any amino acid, there are tu sequences containing s′, and qa partial conformations defined by s′.
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A complete sequence would still have qn conformations, and computing the energy of a conformation takes
O(n2) time using a pairwise energy function. Thus, a single-sequence algorithm would spend O(tuqnn2)
worst-case time individually computing the K∗ scores of all tu sequences. In contrast, the cost of an MS
bound isO(qa(a2+q2t2un)), which includesO(qaa2) time to compute the pairwise energy of the a assigned
residues of all qa partial conformations, and O(qa+2t2un) time to compute a bound on the energy of each
partial conformation. By reducing two exponentials from tu to t2, and from qn to qa+2, BBK∗ computes
an MS bound in time sublinear in the number (tu) of sequences. The cost to compute a single, provable
MS bound (that holds for all tu sequences) is therefore significantly smaller than the cost to compute tu

single-sequence bounds. Furthermore, these MS bounds are used to prune partial sequences containing
combinations of mutations: for a pruned partial sequence s′, all tu sequences containing s′ are provably
eliminated from search without any additional computation. That is, BBK∗ provably, combinatorially prunes
the search space. Since this pruning occurs during search, rather than as a preprocessing step, the pruning
performed by BBK∗ is distinct from previous pruning techniques such as dead-end elimination [5, 6]. BBK∗

pruning is used after dead-end elimination pruning to further improve empirical performance. Finally, MS
bounds are in many cases inexpensive to compute when compared to theO(qnn2) complexity of computing
an SS-ε bound for a single-sequence. Since there are qa partial conformation energy bounds to compute,
the cost of an MS bound increases exponentially as a increases. Obviously, when a� n, qa+2 � qn. This
is very advantageous for A∗ search, because a is initially very small: when BBK∗ begins search, a = 1,
and increases one at a time. Furthermore, a + u = n, and a never exceeds n. Thus in many cases a � n,
and MS bound costs of O(qa+2t2un) are significantly smaller than the SS-ε costs of O(qnn2) for a single
sequence. Use of MS bounds enables BBK∗ to efficiently bound and prune sequences that would otherwise
require O(qnn2) time each to evaluate.

The algorithmic advances that make MS bounds possible are new bounds on partial and full sequences.
We denote the design states unbound protein, unbound ligand, and bound complex as P , L, and PL respec-
tively. The following definitions of these new bounds are sufficient for the theorems provided in the main
paper – the precise definitions involve some subtleties, which are deferred to Appendix A. Given a sequence
s and a state X ∈ {P,L, PL}, the function LX (s) is a provable lower bound of the partition function for
s in state X , and UX (s) is a provable upper bound on the partition function for s in state X . For a partial
sequence s′, LX (s

′) and UX (s
′) are, respectively, partition function lower and upper bounds for the combi-

natorial number of sequences containing s′. These lower- and upper-bounding functions are combined into
an upper-bounding function K+

a (s
′) on the partition function ratio of s′.

Definition 1. Let s be a sequence. K+
a (s) is defined as follows:

K+
a (s) =

UPL(s)

LP (s)LL(s)
. (3)

The following theorem establishes the relationship between the partition function ratio of a partial se-
quence and the partition function ratio of any sequence containing the partial sequence:

Theorem 1. Let s be a partial or complete sequence. For any partial sequence s′ ⊂ s, K+
a (s

′) bounds
K+
a (s) from above:

K+
a (s

′) ≥ K+
a (s) ≥

ZPL(s)

ZP (s)ZL(s)
= K∗(s). (4)

A proof of this theorem is provided in Appendix A.3. Theorem 1 shows that the bounds used by BBK∗

are admissible. That is, they never underestimate the K∗ ratio of any partial sequence. Thus, BBK∗ uses
K+
a (s

′) as the optimistic bounding function for A∗ search. Previously, A∗ search has been used to provably
enumerate conformations within some energy window Ew of the GMEC [30] and to provably approximate
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Figure 2: BBK∗ pruning efficiently explores the sequence space. An example design of residues 192
and 194 of the fourth fibronectin F1 module, and residues 649 and 651 of a fragment S. aureus fibronectin
binding protein a-5 is shown (Fig. 1, PDB Id: 2RL0). As BBK∗ searches the sequence space (tree above)
its multi-sequence bounds provably prunes sub-trees from the sequence space. All sequences containing
R194/I649 are pruned (red crosses) after computing exactly one multi-sequence bound: the bound on
the partial sequence R194/I649, which is an upper bound for all sequences containing R194/I649. Se-
quences containing M192/C194/I649 are pruned (red crosses) after computing only the multi-sequence
bound for the partial sequence M192/C194/I649. All pruned sequences and partial sequences, shown as
empty gray circles, have no additional computation performed. Even though single-sequence bounds are
initiated for both I192/C194/I649/E651 and I192/C194/I649/D651, the latter is pruned after computing a
mere δ-approximation bound (orange leaf node), which is cheaper, and not as tight as a ε-approximate
bound. A provable ε-approximation bound (green leaf node) is computed for only the optimal sequence,
I192/C194/I649/E651. In contrast, single-sequence methods compute separate ε-approximate bounds
(which are expensive) for all 8 possible sequences, shown as leaf nodes in the tree.

the partition function of single sequences [7, 17, 34, 44]. Since Eq. (4) defines an admissible bound over
sequences, all of the provable guarantees of A∗ apply to BBK∗. With these guarantees, BBK∗ provably
searches over sequences rather than conformations, and is guaranteed to return a gap-free list of sequences
in order of decreasing binding affinity.

4.1 Algorithm Overview
BBK∗ bounds all possible sequences either with the MS bounds described in Sec. 4, or by computing a

single-sequence bound as described in [15, 34, 44]. In brief, to bound a single sequence, BBK∗ computes a
gap-free list of conformations whose cumulative conformational energies (Eq. 1) are used to bound the K∗

ratio. The algorithm reports an error bound δ such that the computed bound is guaranteed to be no more
than a (1 + δ) factor greater than the true K∗ ratio. We will refer to these single-sequence, δ-approximate
bounds [17, 18] as SS-δ bounds. As the gap-free list used for an SS-δ bound grows in size, the computed
single-sequence bound becomes tighter (δ decreases). Eventually, δ ≤ ε, and the single-sequence bound
becomes an SS-ε bound. We will refer to an SS-δ bound constructed this way as a running bound, which
BBK∗ incrementally tightens as it enumerates additional conformations [17]. In effect, BBK∗ repeatedly
performs one of two operations: (a) construct and compute t new MS bounds by extending a partial sequence
s′ with all allowed mutations at one residue, or (b) incrementally tighten the running bound of an existing
SS-δ for some sequence.

To begin, BBK∗ creates a max heap whose node values correspond to either full or partial sequences and
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whose node keys are an upper bound on all K∗ ratios (Eq. 2) in the sequence space represented by the node.
The heap is initialized with a node whose value is an empty sequence (i.e., no mutable residues have fixed
amino acid identities), which represents the entire sequence space. BBK∗ then repeatedly removes the max
node x of the queue, and performs one the following operations:

1. Branch. If x contains a partial sequence s′, then s′ is expanded. Expansion creates t new child nodes
by selecting an unassigned residue r in s′, and creating a new child node for each allowed amino acid
a at r. Each child node contains s′ plus the additional mutation of a assigned at r. These nodes are
bounded with MS bounds or SS-δ bounds, and reinserted into the heap.

2. Update. If x contains a complete sequence s, whose bound is an SS-δ bound, then BBK∗ enumerates
8 additional conformations, tightening the SS-δ bound. x is reinserted into the heap, with the updated
SS-δ bound as its key. This is important for pruning, we will describe later.

3. Return. If x contains a complete sequence, whose bound is an SS-ε bound, then the sequence in this
node has the best K∗ ratio of all unenumerated sequences, and is returned.

BBK∗ terminates when it has enumerated the top k sequences (by SS-ε bound), where k is a user-
specified number. Notably, because SS-δ bounds are incrementally tightened, the algorithm computes very
few SS-ε bounds. Instead, many sequences are pruned after computing an SS-δ bound, which often requires
significantly fewer conformations to compute than the tighter SS-ε bound. For example, in Fig. 2, single-
sequence computation is initiated for two sequences, but a provable ε-approximation is computed for only
the optimal sequence. The other sequence is pruned from search after computing a SS-δ bound. A detailed
description of the algorithm is provided in Appendix A.8.

5 Computational Experiments
We implemented BBK∗ in our laboratory’s open source OSPREY [13] protein design package and com-

pared our algorithm to the previous state-of-the-art single-sequence iMinDEE/A∗/K∗ algorithm [17,34,44].
We computed the five best binding sequences using both BBK∗ and iMinDEE/A∗/K∗ for 204 different pro-
tein design problems from 51 different protein-ligand complexes. For each protein-ligand interface, we
created four design problems spanning the wild-type sequence and all sets of single, double, triple, and
quadruple mutants, respectively. In each design problem, we modeled either 8 or 9 residues at the protein-
ligand interface as mutable and flexible. Each mutable residue was allowed to assume its wild-type identity
or mutate to 13-19 other amino acids. The size of the resulting design problems ranged from 10 to 2.6×106

sequences and 105 to 1011 conformations (over all sequences). In all cases, we modeled continuous side-
chain flexibility using continuous rotamers [12, 45]. As in [12, 17], rotamers from the Penultimate Rotamer
Library [35] were allowed to minimize to any conformation within 9◦ of their modal χ-angles. For all de-
sign problems, we performed minimized dead-end elimination pruning (minDEE) [17], followed by either
iMinDEE/A∗/K∗ or BBK∗. The initial pruning window [12] was 0.1 kcal/mol, and the SS-ε bound accu-
racy was 0.683 (details are provided in Appendix A.9). Each design either provably returned the optimal
sequences or was terminated after 30 days. A detailed description of the 51 protein-ligand systems in our
experiments, the 204 protein design problems based on these systems, and our experimental protocol is
provided in Appendix C.1.

5.1 Performance Comparison
As the size of the sequence space increases, so does the efficiency of BBK∗ over iMinDEE/A∗/K∗

(Fig. 3), demonstrating that the complexity of BBK∗ is in practice sub-linear in the number of sequences. Be-
cause iMinDEE/A∗/K∗ computes individual sequence binding energies as SS-ε bounds, we first measured
the efficiency of BBK∗ using the number of SS-ε bounds computed. Since K∗ scores in iMinDEE/A∗/K∗

are based on minimized conformation energies [12, 17, 34], whose computation represents a major compu-
tational bottleneck, we also measured efficiency using the number of conformation energy minimizations
performed. Last, we compared the running times of BBK∗ to those of iMinDEE/A∗/K∗.
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Figure 3: BBK∗ is up to five orders of magnitude more efficient than iMinDEE/A∗/K∗. BBK∗ com-
pleted all 204 designs within a 30 day limit, while iMinDEE/A∗/K∗ completed only 107. (A) The number
of SS-ε bounds performed vs. the number of sequences in the design space. Results are shown for com-
puting only the the best sequence (blue) and computing the best five sequences (orange). Single-sequence
algorithms, including the best previous algorithm iMinDEE/A∗/K∗, must compute binding affinity for all
possible sequences (green curve). BBK∗ required up to 6 × 105-fold fewer SS-ε bounds to find the best
sequences. (B) The number of energy-minimized conformations by BBK∗ and iMinDEE/A∗/K∗ vs. the
number of sequences in the design space. iMinDEE/A∗/K∗ completed only 107 of 204 designs (left of the
vertical line) before the 30-day timeout. For these designs, BBK∗ was up to 1700-fold more efficient. (C)
BBK∗ and iMinDEE/A∗/K∗ running times vs. the number of sequences in the design space. For the 107
designs completed by iMinDEE/A∗/K∗ within 30 days (left of the vertical line), BBK∗ was up to 800-fold
more efficient than iMinDEE/A∗/K∗.

We divide the design problem sizes into three categories: the smallest problems have between 10 and 102

sequences; medium-sized problems contain between 102 and 104 sequences; and the largest problems con-
tain between 104 and 107 sequences. After 30 days, BBK∗ completed all 204 designs, but iMinDEE/A∗/K∗

completed only 107 of 204 designs: all 39 of the smallest designs, 54 of 63 medium-sized designs, and only
14 of the 111 largest designs. We now discuss results for the 107 designs completed by iMinDEE/A∗/K∗.
Because iMinDEE/A∗/K∗ computes individual sequence binding energies as SS-ε bounds, we first mea-
sured the efficiency of BBK∗ using the number of SS-ε bounds computed (Fig. 3(A)). For small, medium,
and large designs, respectively, BBK∗ was on average 17-fold, 162-fold, and 2568-fold more efficient than
iMinDEE/A∗/K∗. Next, we measured efficiency using the number of conformation energy minimizations
performed (Fig. 3(B)). Here, BBK∗ minimized, on average, 10-fold, 43-fold, and 113-fold fewer confor-
mations for small, medium, and large-sized designs, respectively, compared to iMinDEE/A∗/K∗. Last, we
compared empirical running times for both methods (Fig. 3(C)). On average, BBK∗ was 36-fold, 67-fold,
and 97-fold faster than iMinDEE/A∗/K∗ for small, medium, and large-sized designs, respectively.

Based on the data from the 107 designs that iMinDEE/A∗/K∗ was able to complete within 30 days,
we conclude that BBK∗ provides a combinatorial speedup over iMinDEE/A∗/K∗. Crucially, BBK∗ is not
only more efficient, but also retains the provability guarantees and biophysical modeling improvements
(i.e. ensemble-based design, continuous flexibility) employed by single-sequence iMinDEE/A∗/K∗. In one
large design (2.6× 106 sequences), involving a camelid single-domain VHH antibody fragment in complex
with RNASE A (PDB Id: 2P49), BBK∗ pruned more than 99.9% of sequences to provably find the best 5 se-
quences. Therefore, BBK∗ can design over similarly sized sequence spaces to high throughput experimental
screening methods such as phage display [3, 40].
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Figure 4: BBK∗ used MS and SS-δ bounds to prune up to 99.99999% of the sequence space. (A)
Sequence space reduction due to MS pruning. The fraction of un-pruned sequences (gray) normalized to the
total number of sequences (green). BBK∗ used MS bounds to provably prune up to 99.9% of the sequence
space. BBK∗ does not compute SS-ε bounds for pruned sequences. (B) The fraction of BBK∗ SS-ε bounds
(blue for the best sequence and orange for the best 5 sequences) normalized to the number of sequences not
pruned by MS bound pruning (gray). To compute the best sequences, BBK∗ performed SS-ε bounds for as
few as 0.01% of the un-pruned sequences. The remaining 99.99% of these sequences were pruned at mere
SS-δ accuracy.

5.2 Sequence Space Pruning
BBK∗ owes its efficiency to two complementary modes of sequence pruning: MS bound pruning and

SS-δ bound pruning. As described in Sec. 4, an MS bound on partial sequence s′ is a provable upper bound
on the best possible K∗ ratio for all sequences that contain s′. By pruning s′, BBK∗ avoids computing SS-ε
bounds for the combinatorial number of sequences s containing s′, thereby avoiding most of the computa-
tional bottleneck faced by all single sequence methods. Fig. 4(A) illustrates the efficiency gains in BBK∗ due
to MS bound pruning. In small, medium, and large design problems, respectively, BBK∗ pruned up to 90%,
99% and 99.9% of the sequence design space using MS bound pruning. These data show that the amount of
MS pruning increased significantly with the size of the design space.

Unlike an MS bound, an SS-δ bound is a provable upper bound on an SS-ε bound (Sec. 4.1) for a
single full sequence, s. By pruning s at SS-δ bound accuracy, BBK∗ stops processing conformations for s
before reaching the more precise ε-approximation required for an SS-ε bound. (BBK∗ computes SS bounds
using our novel two-pass algorithm, which speeds up SS bound computation up to 1982-fold relative to our
previous best algorithm, iMinDEE/A∗/K∗. Further details and empirical measurements of the method are
provided in Appendix A.10 and B.1, respectively,.) Fig. 4(B) illustrates the efficiency gains in BBK∗ due to
SS-δ bound pruning. In small, medium, and large design problems, respectively, SS-δ pruning eliminates up
to 98%, 99.9% and 99.99% of the sequences not pruned by MS pruning. These data show that the amount
of SS-δ pruning increased with the size of the design problem.

Importantly, MS bound pruning and SS-δ bound pruning have multiplicative synergy, producing a com-
bined pruning effect of up to 99.99999% of the original sequence space while provably finding the five
best binding sequences. In one example, we re-designed the protein-protein interface (PPI) of a camelid
affinity-matured single-domain VHH antibody fragment (PDB Id: 2P4A). The sequence space, 2.6 × 106

sequences, consisted of all quadruple mutants in the 9-residue PPI. BBK∗ pruned all but 2078 sequences
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using MS pruning and then pruned 2071 sequences from these remaining 2078 sequences using SS-δ bound
pruning. These data show how BBK∗ prunes a combinatorial number of sequences from the design space,
producing dramatic efficiency gains over single-sequence methods.

5.3 Design with Coupled Continuous Side-Chain and Backbone Flexibility

Figure 5: BBK∗ efficiently handles coupled continuous side-chain and local backbone flexibility. Se-
lected residues from ensembles, computed by BBK∗, of human fibronectin F1 modules 4-5 (magenta) in
complex with a fragment of S. aureus fibronectin binding protein A 5 (FNBPA-5, PDB Id: 2RL0, [36]). The
design space consisted of the wild-type sequence and either 15 or 25 single amino-acid mutants. (A) En-
semble of the wild-type sequence based on the original crystal structure. The design used a fixed FNBPA-5
backbone (green) and continuous side-chain flexibility. (B) Ensemble of the wild-type sequence using two
backbones: the original FNBPA-5 backbone (green) and a second backbone (PDB Id: 2RKY, cyan) with
RMSD 1.3 Å from the original (found using the MASTER program [62]). The sequence rankings (by K∗

score, Eq. 2) from the fixed and flexible backbone models had Spearman correlation coefficients of ρ=0.53
and ρ=0.82 in the 15 and 25 mutant designs, respectively. This shows that the flexible backbone model
favors binding in very different sequences than the fixed backbone model does.

Protein design with continuous rotamers is more accurate than design with rigid rotamers [12]. However,
design with an ensemble of backbones and coupled continuous side-chain and local backbone flexibility,
which is enabled by the DEEPer framework [25], is even more realistic. This is because the combination of
side-chain and backbone flexibility better accounts for possible conformational changes induced by amino
acid substitutions. To determine whether design with a fixed backbone and continuous rotamers (i.e. the
fixed backbone model) predicts tight binding in the same sequences as does a model with both local back-
bone flexibility and continuous rotamers (i.e. the flexible backbone model), we used BBK∗ to redesign the
Human Fibronectin F1:Staphylococcus aureus FNBPA-5 interface [36] (PDB Id: 2RL0) for binding affinity.
Then, we compared the sequence rankings produced by BBK∗ using each input model. In our designs, we
searched over the wild-type sequence and either 15 or 25 single amino acid mutants at the PPI. In our four
design problems, 10 residues at the interface were modeled as flexible and allowed to mutate to between 2-5
other amino acids, yielding conformation spaces ranging from 104-109 conformations. We used the MAS-
TER program [62] to find an alternate FNBPA backbone (PDB Id: 2RKY, [1]) with an RMSD of 1.3 Å from
the wild-type backbone. This backbone allowed for more interactions between F156 and T654, between
S189 and E652, and between R191 and D650 at the PPI. Coupled continuous side-chain and local backbone
flexibility were modeled using DEEPer [25]. With the flexible backbone model, BBK∗ searched over both
backbones. Details of our experimental protocol are provided in Appendix C.3.

In the first experiment, we re-designed the Fibronectin F1:FNBPA-5 interface for binding affinity over
the wild-type sequence and 15 single amino-acid polymorphisms. Our results showed that using the flexible
backbone model versus the fixed backbone model increased the size of the design conformation space by
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1417-fold but only increased the running time by 4-fold in BBK∗. By comparison, iMinDEE/A∗/K∗ required
48-fold more time than BBK∗ to complete the flexible backbone design. Our results also showed that the
BBK∗ sequence rankings between the two input models had a Spearman correlation coefficient of ρ=0.53.
Thus, the flexible backbone model favors binding in different sequences than the fixed backbone model
does. For instance, the FNBPA-5 D650E mutant is predicted to bind less tightly than the wild-type in
the fixed backbone model (Fig. 5(A)) but not in the flexible model (Fig. 5(B)). In our second experiment,
the sequence design space consisted of the wild-type sequence and 25 single amino-acid polymorphisms.
The BBK∗ sequence rankings produced by the two input models had a Spearman correlation coefficient of
ρ=0.82 (additional details are provided in Appendix B.2). Relative to the fixed backbone model, the flexible
backbone model increased the size of the design conformation space by 8447-fold but only increased the
running time by only 1.7-fold in BBK∗. iMinDEE/A∗/K∗ required 89-fold more time than BBK∗ to complete
the design using the flexible backbone model.

These results show that BBK∗ makes designs with backbone flexibility feasible. Compared to the pre-
vious state-of-the-art iMinDEE/A∗/K∗, BBK∗ is not only able to provably compute the tightest-binding
sequences for designs that were previously too large, but can also efficiently handle designs with additional
degrees of backbone flexibility. It is important to note that these experiments are only possible with prov-
able algorithms. Without the provable guarantees of BBK∗, it would be difficult and perhaps unsound to
compare the results of computational protein design with and without coupled continuous side-chain and
backbone flexibility, since difference induced by the fixed backbone and rotamer model cannot be decon-
volved from differences stemming from undersampling or inadequate stochastic computation. Thus, BBK∗

provides provable methods to analyze the difference in predicted sequences between different models of
side-chain and backbone flexibility.

6 Conclusion
BBK∗ fills an important lacuna in protein design: we presented a novel algorithm that can search effi-

ciently not over the energies of single-conformations, but over the binding affinity of sequences. BBK∗ is,
to our knowledge, the first provable, ensemble-based algorithm to search in order of binding affinity and
run in time sub-linear in the number of sequences. Previously, protein designers either employed heuristic
algorithms to compute locally optimal sequences, or computed provably accurate approximations of binding
affinity for each sequence individually. BBK∗ not only computes the globally optimal sequences, it does so
while combinatorially pruning the search space. Our experiments show that BBK∗ can search over sequence
spaces of up to 2.6×106 sequences, a capacity comparable to high-throughput experimental screening meth-
ods such as phage display. Thus, BBK∗ liberates binding affinity-based protein design from the efficiency
barrier imposed by exhaustive search. Ensemble-based design for affinity over large sequence spaces was
previously possible only with heuristic algorithms (with no guarantees), or using high-throughput wet-bench
experiments. Ensemble-based design for affinity over large sequence spaces was previously possible only
with heuristic algorithms (with no guarantees), or using high-throughput wet-bench experiments. BBK∗

enables computational protein design by providing new Ka algorithms, with provable guarantees, for these
large-scale protein designs.

Acknowledgments
We would like to thank Drs. Mark Hallen and Pablo Gainza for helpful discussions and for providing

useful protein-ligand binding problems; Dr. Jeffrey Martin for assisting with software optimizations; Jack
Holland, Gevorg Grigoryan, Hunter Nisonoff, Anna Lowegard and all members of the Donald lab for helpful
discussions; and the NSF (GRFP DGF 1106401 to AAO) and NIH (R01-GM78031 and R01-GM118543 to
BRD, R01-HL119648 to VGF) for funding.

13



References
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[40] Gábor Pál, Jean-Louis K Kouadio, Dean R Artis, Anthony A Kossiakoff, and Sachdev S Sidhu. Com-
prehensive and quantitative mapping of energy landscapes for protein-protein interactions by rapid
combinatorial scanning. J Biol Chem, 281(31):22378–85, Aug 2006.

[41] Jian Peng, Raghavendra Hosur, Bonnie Berger, and Jinbo Xu. iTreePack: protein complex Side-Chain
packing by dual decomposition. arXiv:1504.05467 [q-bio.BM], 2015.

[42] Niles A Pierce and Erik Winfree. Protein design is NP-hard. Protein Eng, 15(10):779–82, Oct 2002.

16



[43] Stephanie M Reeve, Pablo Gainza, Kathleen M Frey, Ivelin Georgiev, Bruce R Donald, and Amy C
Anderson. Protein design algorithms predict viable resistance to an experimental antifolate. Proc Natl
Acad Sci U S A, 112(3):749–54, Jan 2015.

[44] Kyle E Roberts, Patrick R Cushing, Prisca Boisguerin, Dean R Madden, and Bruce R Donald. Com-
putational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Comput Biol,
8(4):e1002477, 2012.

[45] Kyle E Roberts and Bruce R Donald. Improved energy bound accuracy enhances the efficiency of
continuous protein design. Proteins, 83(6):1151–64, Jun 2015.

[46] Kyle E Roberts, Pablo Gainza, Mark A Hallen, and Bruce R Donald. Fast gap-free enumeration of
conformations and sequences for protein design. Proteins, 83(10):1859–77, Oct 2015.

[47] Rebecca S Rudicell, Young Do Kwon, Sung-Youl Ko, Amarendra Pegu, Mark K Louder, Ivelin S
Georgiev, Xueling Wu, Jiang Zhu, Jeffrey C Boyington, Xuejun Chen, Wei Shi, Zhi-Yong Yang,
Nicole A Doria-Rose, Krisha McKee, Sijy O’Dell, Stephen D Schmidt, Gwo-Yu Chuang, Aliaksandr
Druz, Cinque Soto, Yongping Yang, Baoshan Zhang, Tongqing Zhou, John-Paul Todd, Krissey E
Lloyd, Joshua Eudailey, Kyle E Roberts, Bruce R Donald, Robert T Bailer, Julie Ledgerwood, NISC
Comparative Sequencing Program, James C Mullikin, Lawrence Shapiro, Richard A Koup, Barney S
Graham, Martha C Nason, Mark Connors, Barton F Haynes, Srinivas S Rao, Mario Roederer, Peter D
Kwong, John R Mascola, and Gary J Nabel. Enhanced potency of a broadly neutralizing HIV-1 anti-
body in vitro improves protection against lentiviral infection in vivo. J Virol, 88(21):12669–82, Nov
2014.

[48] Daniele Sciretti, Pierpaolo Bruscolini, Alessandro Pelizzola, Marco Pretti, and Alfonso Jaramillo.
Computational protein design with side-chain conformational entropy. Proteins, 74(1):176–91, Jan
2009.

[49] Maxim V Shapovalov and Roland L Dunbrack, Jr. A smoothed backbone-dependent rotamer library
for proteins derived from adaptive kernel density estimates and regressions. Structure, 19(6):844–58,
Jun 2011.

[50] Reshma P Shetty, Paul I W De Bakker, Mark A DePristo, and Tom L Blundell. Advantages of fine-
grained side chain conformer libraries. Protein Eng, 16(12):963–9, Dec 2003.

[51] Nathaniel W Silver, Bracken M King, Madhavi N L Nalam, Hong Cao, Akbar Ali, G S Kiran Ku-
mar Reddy, Tariq M Rana, Celia A Schiffer, and Bruce Tidor. Efficient computation of small-molecule
configurational binding entropy and free energy changes by ensemble enumeration. J Chem Theory
Comput, 9(11):5098–5115, Nov 2013.

[52] David Simoncini, David Allouche, Simon de Givry, Céline Delmas, Sophie Barbe, and Thomas Schiex.
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Appendix
The following is an appendix, which provides additional information to substantiate the claims made

in the Sections 1 through 6. In Appendix A, a detailed description of the BBK∗ algorithm, described in
Section 4, along with proofs of correctness, space complexity, and time complexity are given. Appendix B
provides additional results to support the results discussed in Section 5, and Appendix C provides details of
the computational experiments performed in Section 5.

A Supplementary Methods
In this section, we provide the proofs necessary to show admissibility of the K∗ lower bound. We begin

with definitions for K∗, a discrete approximation of the binding affinity Ka, then define its multiplicative
inverse K∗, which we wish to approximate. We then give upper bounds on the denominator and lower
bounds on the numerator for the terms in K∗, and show that these bounds can be combined to calculate
a provable lower bound for K∗. Finally, we show that these bounds on K∗ are guaranteed to be an ε-
approximation of K∗, for which ε can be arbitrarily reduced to any user-specified value with additional
computation.

A.1 Definitions
A.1.1 Protein design problem

In this subsection, we define the protein design problem. To define the upper and lower bounds com-
puted on partial sequences during A∗ search, we define assignments to sequences and conformations more
precisely. Additionally, we define two rigid, quadratic time pairwise energy functions that provide an upper
and lower bound on a given conformation.

For an n-residue protein design problem with at most t amino acids and q rotamers per amino acid, let
the set of mutable residues be R. Let P , L, and PL denote the unbound protein, unbound ligand, and bound
protein-ligand complex, respectively. For each mutable residue r ∈ R, let Ar be the set of allowed amino
acids at r, and Qr be the set of allowed rotamers at r.

A.1.2 Sequences and Conformations

Let s be a set of candidate mutations, or a sequence assignment. That is, let s =
d⋃
i=1
{(ri, ai)} be

a set of d 2-tuples, each consisting of one mutable residue ri ∈ R and one amino acid ai ∈ Ari . For
convenience, we will also denote the amino acid assignment at mutable residue j ∈ R as sj , such that for
a tuple (j, a) ∈ s, sj = a. Additionally, we define A(s) to be the set of mutable residues contained in s,
while U(s) = R − A(s) is the set of mutable residues not in s, i.e. the unassigned residues of s. Let us

now consider a partial sequence s′ =
d′⋃
i=1
{(ri, ai)} of d′ 2-tuples. We will refer to s as being consistent with

a partial sequence s′ to mean that for all r ∈ A(s′) ∩ A(s), s′r = sr. When d′ < d we will refer to this
consistency as s ⊃ s′.

Similarly, we define a conformation c =
d⋃
i=1

(ri, qi) to be a set of d 2-tuples, each composed of a

mutable residue ri ∈ R and a rotamer qi ∈ Qi, where Qi is the set of rotamers allowed at residue ri. For
convenience, we will denote the rotamer assignment of c at mutable residue j ∈ R as cj . We define A(c) and
U(c) analogously for conformations as we did for sequences. Let us now consider a partial conformation

c′ =
d′⋃
i=1
{(ri, qi)} of d′ 2-tuples. We will refer to c as being consistent with a partial conformation c′ to

mean that for all r ∈ A(s′) ∩ A(s), c′r = cr. When d′ < d we can simply state this consistency as c ⊃ c′.
For any amino acid assignment sr at residue r, Let Q(sr) be the set of allowed rotamers defined by sr.

We further extend this definition as a function over sequences. Q(s) takes as input a partial or full sequence
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s and returns the set of partial or full conformations consistent with s:

Definition 2.
Q(s) =

∏
r∈A(s)

Q(sr). (5)

A.1.3 Energy functions
For a given rigid rotamer conformation c let EX be a pairwise energy function, such that EX(c) is

the corresponding post-minimization energy of that conformation with respect to the protein state X ∈
{P,L, PL}. We also define E�X(c), the energy of c before rotamer minimization, and E	X(c), the lower
bound of energy of EX(c) calculated with precomputed, optimistic pairwise-minimized energies instead of
minimizing all mutable residues simultaneously. If |c| < n, we define the three energy functions to be
the one-body and two-body energy function terms consisting only of the residues in A(c). By definition,
E	X(c) ≤ EX(c) ≤ E

�
X(c) for any conformation c.

A.1.4 K∗

We can now define the Boltzmann-weighted partition function ZX(s):

ZX(s) =
∑
c∈Q(s)

exp(−EX(c)/RT ). (6)

The K∗ ratio, which approximates binding affinity Ka, can then defined to be:

K∗(s) =
ZPL(s)

ZP (s)ZL(s)
. (7)

We refer the reader to [17, 34, 44] for a more rigorous explanation of K∗.
Similarly, we define K∗ to be the multiplicative inverse of K∗:

K∗(s) =
ZP (s)ZL(s)

ZPL(s)
. (8)

A.2 Bounding the Partition Function
In the following subsection, we define two new functions: LX(s) and UX(s), which provide lower and

upper bounds on ZX(s), respectively. We then show the relationship between these bounds and ZX(s),
and show that for any sequence s they bound ZX(s) from below and above, respectively, not only for s
but for any partial sequence s′ ⊂ s. For convenience, we will assume the energy functions used below are
consistent with the state X defined by UX and LX , and abbreviate EX(c) to E(c). We do the same for
E�X(c) and E	X(c).

A.2.1 Lower bounds: LX(s)
In this subsection, we define the function LX(s) for a sequence s. We begin with partial conformation

c′ and define an energy upper bound that also holds for the energy of any conformation c such that c ⊃ c′.
That is, given c′, we seek an upper bound on all conformations consistent with c′. We define two functions
g(c′) and h⊕(c′) whose sum g(c′)+h⊕(c′) ≥ E(c) for all c consistent with c′. g(c′) and h⊕(c′) are defined
below.

g(c′) is the sum of unary and pair-wise rotamer energies over assigned residues A(c′), defined as:

Definition 3.

g(c′) =
∑
i∈A(c′)

E(c′i) +
∑

j∈A(c′)
j>i

E(c′i, c
′
j)

 . (9)
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To define h⊕(c′), we first define the function h⊕(c′, i), which is a function of c′ and a mutable residue
i ∈ R. We first define qi to be the candidate rotamer q at residue i. Additionally, let Qi =

⋃
a∈Ai

Q(a) be the

set of all allowed rotamers at i. Since i has not been assigned an amino acid identity, Qi may be the union of
rotamer sets from multiple amino acids, and a rotamer q ∈ Qi may be from any of multiple allowed amino
acids. We define Qk similarly.

Definition 4.

h⊕(c′, i) = max
q∈Qi

E�(qi) + ∑
j∈A(c′)

E�(qi, c
′
j) +

∑
k∈U(c′)
k<i

max
q′∈Qk

E�(qi, q
′
k)

 (10)

h⊕(c′) is then defined to be a sum of h⊕(c′, i) over the unassigned residues U(c′):

Definition 5.
h⊕(c′) =

∑
i∈U(c′)

h⊕(c′, i) (11)

By definition, g(c) + h⊕(c) ≥ E(c). This is most easily seen from the fact that E�(qi) ≥ E(qi). We
now show that for a partial conformation c′, any superset c ⊃ c′ conformation must have an upper bound
less than our equal to than the upper bound of c′.

Proposition 1. For all conformations c and all partial conformations c′ ⊂ c, g(c′)+h⊕(c′) ≥ g(c)+h⊕(c)

Proof. Suppose g(c′) + h⊕(c′) < g(c) + h⊕(c). Since A(c′) ⊂ A(c), there exists at least one residue
i ∈ A(c)− A(c′) with assigned rotamer ci where the following must be true:

h⊕(c′, i) = max
q∈Qi

E�(qi) + ∑
j∈A(c′)

E�(qi, c
′
j) +

∑
k∈U(c′)
k<i

max
q′∈Qk

E�(qi, q
′
k)


< E(ci) +

∑
j∈A(c′)

E(ci, cj) +
∑

k∈U(c′)
k<i

E(ci, ck)

≤ E⊕(ci) +
∑

j∈A(c′)

E�(ci, cj) +
∑

k∈U(c′)
k<i

E�(ci, ck).

In this case, h⊕(c′, i) is not the maximum as defined, or the inequality must not be true. Since h⊕(c′, i)
can be updated to take this larger value without any constraint, the inequality must not be true, and g(c′) +
h⊕(c′) ≥ g(c) + h⊕(c).

We now define τ(c′), which is a lower bound on the number of full conformations consistent with c′ for
any one sequence. For the following definitions of and τ , we define Ai to be the set of allowed amino acids
at residue i.

Definition 6.
τ(c′) =

∏
i∈U(c′)

min
a∈Ai

|Q(a)| (12)
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By definition, if |c| = n then τ(c) = 1, and for any partial sequence s′ such that A(s′) = U(c),
τ(c) ≤ |Q(s′)|. Finally, we combine g(c′), h⊕(c′), and τ(c′) to compute a lower bound on the partition
function contribution of c′:

Definition 7.
`(c′) = exp

((
− g(c′)− h⊕(c′)

)
/RT

)
τ(c′). (13)

Let us consider a partial conformation c′ and a sequence s. We will refer to s as being consistent with
c′ to mean that there exists a nonempty set C ⊆ Q(s) such that for all c ∈ C, c′ ⊂ c. By definition,
`(c′) is a lower bound on the contribution of c′ to the K∗ score (Eq. 7) of any sequence s consistent with
c′. That is, for any partial conformation c′ and partial sequence s′ such that A(s′) = U(c′) , `(c′) ≤

exp

((
−g(c′)−h⊕(c′)

)
/RT

)
|Q(s′)|. This follows directly from Proposition 1 and the definition of τ(c).

With these terms defined, we can now combine them into the partition function lower bound for a sequence
s:

Definition 8.
LX(s) =

∑
c∈Q(s)

`(c). (14)

Next, we will show that LX(s) is a lower bound of ZX(s) for all partial and complete sequences s. We
begin by considering the bound `(c′) of an arbitrary partial conformation c′. Since we have already shown
that for any conformation c and partial conformation c′ ⊂ c, τ(c) ≤ τ(c′) and g(c)+h⊕(c) ≤ g(c′)+h⊕(c′),
it follows that the partial conformation c′ ⊂ c satisfies `(c′) ≤ `(c). We now show that for any sequence s
and any subsequence s′ ⊂ s, LX(s′) ≤ LX(s). We do so by considering an arbitrary partial conformation
c′ ∈ Q(s′). The contribution of `(c′) bounds the sum

∑
c⊃c′
c∈Q(s)

`(c) for all conformations c ∈ Q(s) consistent

with c′.

Lemma 2. Let s′ be a partial sequence, and c′ ∈ Q(s′) be a partial conformation. For any sequence s ⊃ s′,
let Qc′(s) =

∏
i∈A(c′)

{c′i}×
∏

j∈A(s)−A(c′)
Q(sj) be the set of all conformations in Q(s) consistent with c′. Then

for all s′, s ⊃ s′, the following inequality holds:

`(c′) ≤
∑

c∈Qc′ (s)

exp(−E(c)/RT ) (15)

Proof. We begin by noting that from Proposition 1, g(c′) + h⊕(c′) ≥ E(c) for all c ∈ Q(s) and therefore
exp((−g(c′) − h⊕(c′)/RT ) ≤ exp(−E(c)/RT ) for all c′ ∈ Q(s′). It remains only to be shown that
τ(c′) ≤ |Q(s− s′)|τ(c), which follows from the definition of τ(c′).

We will give a bound on LX(s), namely that for all s′, s ⊃ s′, LX(s′) ≤ LX(s), in Section 2.3. We first
define the upper bounding function, UX(s).

A.2.2 Upper bounds: UX(s)
In this subsection we define the function UX(s) for a sequence s. Similarly to the Section 2.1, we first

define a lower bound on the energy of any conformation c in terms of a partial conformation c′ ⊂ c. For all
c′ ⊂ c, the following bound holds:

g(c′) + h	(c′) ≤ E(c) (16)
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Where g(c′) is as defined in Equation 5, and the lower bound h	(c′) is defined as follows:

Definition 9.
h	(c′) =

∑
i∈U(c′)

h	(c′, i). (17)

Definition 10.

h	(c′, i) = min
q∈Qi

E	(qi) + ∑
j∈A(c′)

E	(qi, c
′
j) +

∑
k∈U(c′)
k<i

min
q′∈Qk

E	(qi, q
′
k)

 (18)

By definition, g(c) + h	(c) ≤ E(c). We now show that for a conformation c, any partial conformation
c′ must have a lower bound equal to or lower than the lower bound of c.

Proposition 3. For any conformations c and c′ ⊂ c, g(c′) + h	(c′) ≤ g(c) + h	(c).

Proof. Suppose g(c′)+h	(c′) > g(c)+h	(c). Since A(c′) ⊂ A(c), there exists at least one i ∈ A(c)−A(c′)
where the following must be true:

h	(c′, i) = min
q∈Qi

E	(qi) + ∑
j∈A(c′)

E	(qi, cj) +
∑

k∈U(c′)
k<i

min
q′∈Qk

E	(qi, q
′
k)


>E(ci) +

∑
j∈A(c′)

E(ci, cj) +
∑

k∈U(c′)
k<i

E(ci, ck)

≥E	(ci) +
∑

j∈A(c′)

E	(ci, cj) +
∑

k∈U(c′)
k<i

E	(ci, ck)

In this case, h	(c′, i) 6= min
q∈Qi

E	(qi) + ∑
j∈A(c′)

E	(qi, cj) +
∑

k∈U(c′)
k<i

min
q′∈Qk

E	(qi, ck)

, or g(c′) +

h	(c′) 6> g(c) + h	(c). Since h	(c′, i) can be updated to take this lower value without any constraint, the
inequality must not be true, and g(c′) + h	(c′) ≤ g(c) + h	(c).

We now define λ(c′), which is an upper bound on the number of full conformations consistent with c for
any one sequence.

Definition 11.
λ(c) =

∏
i∈U(c′)

max
a∈Ai

|Q(a)|. (19)

We then combine the definitions to compute an upper bound on the partition function contribution of
any partial conformation c′:

Definition 12.
u(c′) = exp

((
− g(c′)− h	(c′)

)
/RT

)
λ(c′). (20)
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Next, we will show that UX(s) is a upper bound of ZX(s) for all partial and complete sequences s. We
begin by considering the bound u(c′) of an arbitrary partial conformation c′. Since we have already shown
that for any conformation c, the partial conformation c′ ⊂ c satisfies u(c′) ≥ u(c), we now show that for
any sequence s and any subsequence s′ ⊂ s, UX(s′) ≥ UX(s). We do so by considering an arbitrary partial
conformation c′ ∈ Q(s′). The contribution of u(c′) bounds

∑
c⊃c′
c∈Q(s)

u(c) for all conformations c ∈ Q(s)

consistent with c′.

Lemma 4. Let s′ be a partial sequence, and c′ ∈ Q(s′) be a partial conformation. Let Qc′(s) =
∏

i∈A(c′)
{c′i}×∏

j∈A(s)−A(c′)
Q(sj) be the set of all conformations in Q(s) consistent with c′. For all s such that s′ ⊂ s, the

following inequality holds:
u(c′) ≥

∑
c∈Qc′ (s)

exp(−E(c)/RT ) (21)

Proof. We begin by noting that from Proposition 3, g(c′) + h	(c′) ≤ E(c) for all c ∈ Q(s) and therefore
exp((−g(c′)−h	(c′)/RT ) ≥ exp(−E(c)/RT ). It remains only to be shown that λ(c′) ≥ |Q(s−s′)|λ(c),
which follows from the definition of λ(c′).

With these terms defined, we can define an upper bound on the partition function for a partial sequence
s′:

Definition 13.
UX(s

′) =
∑

c′∈Q(s′)

u(c′) (22)

We can now give bounds on LX(s) and UX(s), to show that for any s′ ⊂ s, LX(s′) and UX(s′) are
admissible heuristic functions for s.

A.2.3 LX(s
′) ≤ LX(s) ≤ ZX(s)

By definition, LX(s) ≤ ZX(s). We now show that for all s′, s ⊃ s′, LX(s′) ≤ LX(s).

Lemma 5. For any partial sequence s′ and consistent sequence s ⊃ s′,

LX(s
′) ≤ LX(s) (23)

Proof. Since there exists a partial conformation c′ ∈ Q(s′) for all c ∈ Q(s), the results from Lemma 2
extend to the summation over Q(s′) and Q(s).∑

c′∈Q(s′)

`(c′) ≤
∑
c∈Q(s)

`(c) (24)

By simple substitution of Definition 7, we derive the target relationship:

LX(s
′) ≤ LX(s). (25)

That is, our lower-bounding function LX , for any complete sequences s, where |s| = n, and any partial
sequences s′, LX(s) is guaranteed to be a lower bound of ZX(s).
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A.2.4 UX(s
′) ≥ UX(s) ≥ ZX(s)

By definition, UX(s) ≥ ZX(s). We now show that for all s′, s ⊃ s′, UX(s′) ≥ UX(s).

Lemma 6. For any partial sequence s′ and consistent sequence s ⊃ s′,

UX(s
′) ≥ UX(s). (26)

Proof. By definition, UX(s) ≥ UX(s). Since there exists a partial conformation c′ ∈ Q(s′) for all c ∈ Q(s),
the results from Lemma 2 extend to the summation over Q(s′) and Q(s).∑

c′∈Q(s′)

u(c′) ≥
∑
c∈Q(s)

u(c) (27)

By simple substitution of Definition 12, we derive the desired relationship:

UX(s
′) ≥ UX(s). (28)

A.3 Admissibility
We now define the K+

a (s), which never underestimates the best possible K∗ ratio attainable given a
partial sequence. Without loss of generality, we define K+

a (s) to be an upper bound on K∗, which is a
provable approximation of Ka. Since Ka =

1
Kd

, K+
a (s) is a provable upper bound on K∗(s), and 1

K+
a (s)

is a

provable lower bound on K∗(s).

Definition 1.
K+
a (s

′) =
UPL(s

′)

LP (s′)LL(s′)
. (29)

Theorem 1. K+
a (s) is admissible. That is, for all s, s′ ⊂ s,

K+
a (s

′) ≥ K+
a (s) ≥

ZPL(s)

ZP (s)ZL(s)
= K∗(s). (30)

Proof. This follows directly from Lemma 5 and Lemma 6.

A.4 ε-approximations of the Partition Function
In this subsection, we give the bounds on the error ε for our partition function approximation for each

term, and then show that our ε-approximation of the fullK∗ score can compute an arbitrary ε-approximation
for any user-specified ε. For convenience, we assume all equations operate on a full sequence assignment s,
and abbreviate ZX(s) to ZX and UPL(s) to UPL for the remainder of the proofs.

We first define three epsilon approximations: (1− ε1)ZP ,(1− ε2)ZL , and (1+ ε3)ZPL . We will use the
ε-approximations as defined by [34, 44] for (1− ε1)ZP and (1− ε2)ZL .

Proposition 1. Let Z∗P and Z∗L be the partition function score approximation for so far for ZP and ZL ,
respectively. There exist 0 ≤ ε1 ≤ 1 and 0 ≤ ε2 ≤ 1 such that (1− ε1)ZP ≤ Z∗P ≤ ZP and (1− ε2)ZL ≤
Z∗L ≤ ZL
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These results follow directly from the formulation in [34]. We now define ε3 for use as an upper bound
on ZPL .

Proposition 2. Let Z∗PL be the partition function approximation score of computed so far for ZPL . There
exists 0 ≤ ε3 ≤ 1 such that ZPL ≤ (1 + ε3)Z

∗
PL

Proof. By definition, Z∗PL ≤ ZPL . Thus, for any 0 ≤ ε3 ≤ 1, (1+ ε3)Z
∗
PL ≤ (1+ ε3)ZPL . We can expand

UPL into the sum of three terms: UPL = Z∗PL + q′PL + p∗PL, where Z∗PL is the current approximation of
ZPL , q′PL is a bound on the cumulative contribution of unenumerated conformations and p∗PL is a bound on

the cumulative contribution of conformations pruned by DEE. By defining ε3 =
q′PL+p

∗
PL

Z∗PL
, it follows that

UPL = Z∗PL + q′PL + p∗PL = (1 + ε3)Z
∗
PL. (31)

Theorem 3.
ZPL ≤ UPL ≤ (1 + ε3)ZPL . (32)

Proof. By definition, ZPL ≤ Z∗PL + q′PL + p∗PL. Since Z∗PL ≤ ZPL , for any arbitrary ε3 such that 0 ≤
ε3 ≤ 1, (1 + ε3)Z

∗
PL ≤ (1 + ε3)ZPL . UPL = Z∗PL + q′PL + p∗PL = (1 + ε3)Z

∗
PL from Proposition 2, and

therefore the inequality holds.

We now show that K+
a is a provable ε-approximation of the K∗ ratio.

Lemma 4. For provable ε-approximations (1 + ε3)ZPL , (1 − ε1)ZP , and (1 − ε2)ZL where 0 ≤ ε1 ≤ 1,
0 ≤ ε2 ≤ 1, and 0 ≤ ε3 ≤ 1, there exists 0 ≤ ε4 ≤ 1 such that

(1− ε1)ZP (1− ε2)ZL

(1 + ε3)ZPL

= (1− ε4)
ZPZL

ZPL

. (33)

Proof. Defining ε4 to be 1 − (1−ε1)(1−ε2)
(1+ε3)

, we first observe that 0 ≤ ε4 ≤ 1. We then obtain the following
result:

(1− ε1)ZP (1− ε2)ZL

(1 + ε3)ZPL

=
(1− ε1)(1− ε2)

(1 + ε3)

ZPZL

ZPL

(34)

=

(
1−

(
1− (1− ε1)(1− ε2)

(1 + ε3)

))
ZPZL

ZPL

(35)

=(1− ε4)
ZPZL

ZPL

. (36)

A.5 Space and Time Complexity
The following subsection gives proofs of the space and time complexity of BBK∗. In particular, we

show the space and time complexity of computing a multi-sequence bound (MS bound). We also show the
worst-case space and time complexity for computing the optimal sequence (i.e., the sequence with the best
K∗ ratio).

Let s′ be a partial sequence. We will define the number of assigned residues a = |A(s′)|, as well as the
number of unassigned residues u = |U(s′)|. For a protein design problem with n mutable residues, at most
t amino acids at any mutable residue, and at most q rotamers for any amino acid, the following theorem
bounds the time to compute an MS bound.
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Theorem 5. BBK∗ computes an MS bound in O(qa(a2 + q2t2un)) time.

Proof. The number of partial conformations consistent with s′ (|Q(s′)|) is at most qa. For each of these qa

partial conformations, the time to compute the a2 pair-wise energy terms between them is O(a2). The time
to compute the bounds `(c′) and u(c′) for each partial conformation is O(q2t2un), requiring search over
every possible combination of amino acid (t) and rotamer (q) for each unassigned rotamer.

The following theorem bounds the space to compute an MS bound.

Theorem 6. BBK∗ computes an MS bound in O(1) space.

Proof. An MS is a single scalar value, which is computed as a sum. Only the sum need be stored during
computation.

Notably, the worst-case time complexity to compute an MS bound is linear in u and merely polynomial
in t. iMinDEE/A∗/K∗ must compute tu provable ε-approximations, taking O(tuqnn2) worst-case time.

Theorem 7. BBK∗ computes the top k sequences, where k is a user-specified number, in O(tnqnn2) time
and O(tnqn) space.

Proof. In the worst case, BBK∗ computes an MS bound for all tn−2 partial sequences in O(tnqnn2) time.
It can compute the MS bound for a partial sequence s′ which has only one unassigned residue in O(tqnn2)
time. Therefore, it computes tn−1 MS bounds in O(tnqnn2) time. As shown in Theorem 6, MS bounds
are computed in O(1) space. Finally, in the worst case BBK∗ computes a provable ε-approximation for
all tn sequences, taking O(tnqnn2) time and O(tnqn) space. After computing tn ε-approximations it is
guaranteed to return the optimal sequence.

These deterministic O(tnqnn2) worst-case bounds guarantee optimality after a finite amount of time
and space. In contrast, heuristic methods have no guarantees.

A.6 Ensuring K+
a can be used as a provable A∗ bounding function

We now give some necessary, technical results for an A∗ algorithm when using K∗ as its bounding func-
tion. Without loss of generality, we show that a provable ε-approximation 1

K+
a (s)

of K∗(s) from Lemma 4 is

a monotonically increasing lower bound on K∗(s).

A.6.1 Stability of K+
a

Lemma 8 (below) states that for any arbitrary 0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1, and 0 ≤ ε3 ≤ 1, the
computed K∗ approximation is guaranteed to be a lower bound. That is, it is possible to arbitrarily improve
the ε-approximation of any of the three terms to reduce ε4 (Eq.33). This capability is an improvement over
previous K∗ approximation algorithms [17, 34, 44], which efficiently compute a provable approximation
of the K∗ ratio for single sequences. A different idea is required for MS bounds. In particular, previous
methods computed the following provable approximation:

(1− ε1)ZP (1− ε2)ZL

(1− ε3)ZPL

. (37)

When two sequences have similar ε-approximate K∗ scores computed as in Eq. (37), determining which of
the two is better cannot be done by arbitrarily reducing one of ε1, ε2, or ε3. For some values of ε3, (e.g.
(1 − ε3) = (1 − ε1)(1 − ε2)), the computed K∗ approximation is no longer an upper or lower bound and
hence cannot be used to compare K∗ scores of two different sequences. Thus, the new ε-approximation
given in Eq. (33) and shown to be a lower bound in Lemma 8 is needed when performing A∗ search over
sequences by K∗ score.
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Lemma 8.
(1− ε1)ZP (1− ε2)ZL

(1 + ε3)ZPL

≤ ZPL

ZPZL

. (38)

Furthermore, our computed K∗ bound is a lower bound on the K∗ approximation defined in Eq. (37).

Corollary 9.
(1− ε1)ZP (1− ε2)ZL

(1 + ε3)ZPL

≤ (1− ε1)ZP (1− ε2)ZL

(1− ε3)ZPL

. (39)

A.7 Enforcing Ensemble-based Sequence Stability Constraints during MS bound Compu-
tation

When designing for tight binding affinity, the design objectives are often to (a) compute the best binding
sequences whose (b) unbound states are energetically favorable. The constraint on the unbound state is
intended to exclude sequences whose favorable K∗ scores are due to energetically unfavorable unbound
states that cannot fold into ligand-binding poses. MS bounds are also useful for pruning these sequences.

For any given sequence, s, a high K∗ ratio

K∗(s) =
ZPL(s)

ZP (s)ZL(s)

denotes tight predicted affinity for the ligand. Thus, the constraint, (b), requires that unbound state partition
function, ZP (s), be greater than some ensemble-based threshold, γ. Single-sequence methods compute
a K∗ ratio for each sequence s. In contrast, BBK∗ prunes any partial sequence s′ ⊂ s that violates the
constraint UP (s

′) ≤ γ (see Eq. 22 for the definition of UP (s
′)). Because UP (s

′) ≥ UP (s) ≥ ZP (s) (see
Appendix A.2.4), it follows from UP (s

′) ≤ γ that ZP (s) ≤ γ for the combinatorial number of sequences
s consistent with s′. By pruning s′, BBK∗ avoids costly single-sequence computation for a combinatorial
number of sequences. Therefore, BBK∗ uses MS bounds to prune a combinatorial number of sequences
using not only ensemble-based binding affinity criteria, but also ensemble-based sequence stability criteria.

A.8 BBK∗ Algorithm Description
In this section we include pseudocode describing BBK∗. Algorithm 1 outlines the BBK∗ algorithm.

A.9 Using ε to Bound the Value of K∗

Let s be a full sequence. As described in [17, 34, 44], the ε-approximate partition function ratio to
approximate Ka for s is:

K†(s) =
(1− ε)ZPL(s)

(1− ε)2ZP (s)ZL(s)
. (40)

For X ∈ {PL, P, L}, we define the partition function, ZX (s), over the conformational states of s as

ZX (s) = Z∗
X
(s) + Z

′

X
(s) (41)

where Z∗
X
(s) is the partition function contribution from enumerated and energy-minimized conformations,

and Z
′

X
(s) is the upper bound of the partition function contribution from un-enumerated conformations. We

define ε as

0 ≤ ε =
Z
′

X
(s)

Z∗
X
(s) + Z ′

X
(s)
≤ 1. (42)
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Algorithm 1 BBK∗ Procedure
1: procedure NEXTBESTSEQUENCE

2: Initialization:
3: h← empty heap
4: insert (∅,∞) into h
5: Loop:
6: while h is not empty do
7: remove the max node (s∗, f∗) from h
8: if s∗ has a provable ε-approximation then return s∗

9: if s∗ is a complete sequence then
10: compute tighter bound f ′ on K∗(s∗)
11: f∗ ← f ′

12: insert (s∗, f∗) into h
13: else
14: pick an unassigned mutable residue u
15: for each allowed AA t at u do
16: sa ← s∗ ∪ {u, t}
17: insert new node (sa,K

+
a (sa)) into h

In our experiments in Sec. 5, the details of which are can be found in Appendix B.1, we specified an ε-
approximation accuracy of 0.683. Below, we justify the claim that ε = 0.683 guarantees that our calculated
binding affinity is within one order of magnitude of K†(s).

It is established in [17, 34, 44] that

L = (1− ε)2K† ≤ K† ≤ K†

(1− ε)2
= U. (43)

Proposition 10. Let 0 ≤ ε ≤ 1 and α ≥ 1. If U ≤ αK†, then ε ≤ 1− 1/
√
α.

Proof. U ≤ αK† implies that
K†

(1− ε)2
≤ αK† (44)

which is equivalent to ε ≤ 1− 1/
√
α, as desired.

Proposition 11. Let 0 ≤ ε ≤ 1 and β ≥ 1. If L ≥ K†

β , then ε ≤ 1− 1/
√
β.

Proof. L ≥ K†

β implies that

L = (1− ε)2K† ≥ K†

β
(45)

which reduces to ε ≤ 1− 1/
√
β, as desired.

Thus, per Props. 10 and 11, to compute binding affinity K‡ such that K
†

10 ≤ K
‡ ≤ 10K†, it is sufficient

to have ε = 1− 1/
√
10 ≈ 0.683.
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A.10 A Tighter Two-pass Partition Function Bound for More Efficient SS-ε Bound Com-
putation

In this section, we contrast SS-ε bound computation (where ε is the user-specified approximation accu-
racy) in BBK∗ to iMinDEE/A∗/K∗, our previous best algorithm. In particular, we show that, compared to
iMinDEE/A∗/K∗, BBK∗ computes a tighter, more efficient partition function bound, which allows BBK∗ to
tighten a δ-approximate partition function bound to an ε-approximate bound more efficiently. Per Eq. (1),
ZX (s) is the partition function of sequence s in state X ∈ {P,L, PL}. For simplicity, we will refer to
ZX (s) as Z(s).

iMinDEE/A∗/K∗ computes a δ-approximation of Z(s) by using A∗ to enumerate a gap-free list of con-
formations in increasing order of energy bound [17, 34, 44]. Each energy bound is a lower bound on the
minimized energy of the full conformation. As described in Appendix A.1.1, Q(s) is the set of conforma-
tions consistent with s. Since iMinDEE/A∗/K∗ computes a running sum to approximate Z(s), at any point
in time there will be a set of enumerated conformations, and a set of un-enumerated conformations. Let
A ⊂ Q(s) be the set of enumerated conformations. We define the running partition function, Z∗(s), as

Z∗(s) =
∑
a∈A

exp(−E(a)/RT ), (46)

where E(a) is the minimized energy of conformation a. Let conformation l, whose minimized energy lower
bound is E	(l), be the last conformation enumerated in A. A∗ enumeration guarantees that E	(l) has
the highest energy bound of all conformations in A. Further, let B = Q(s) − A be the set of remaining,
un-enumerated conformations, and let |B| be the size of B. iMinDEE/A∗/K∗ computes a partition function
upper bound for the conformations in B as

Z
′
(s) = |B| exp(−E	(l)/RT ), (47)

and computes δ1 such that

δ1 =
Z
′
(s)

Z∗(s) + Z ′(s)
. (48)

As conformations in Q(s) are enumerated, conformations are removed from B and added to A. So, |A| and
E	(l) increase, but |B| decreases. As a result, Z∗(s) increases but Z

′
(s) decreases until δ1 ≤ ε, and Z∗(s)

becomes an ε-approximation of Z(s).
Z
′
(s) is a loose partition function bound over B because iMinDEE/A∗/K∗ optimistically assumes that

the energy bound for all conformations in B is equal to E	(l). However, A∗ guarantees that conforma-
tions are enumerated in order of increasing energy bound, so successive conformations in B actually have
increasingly higher energy bounds than E	(l).

We use this fact to construct a tighter partition function upper bound Z†(s), (which we call the two-pass
bound) over conformations in B as follows:

Z†(s) =
∑
b∈B

exp(−E	(b)/RT ) (49)

and compute δ2 as

δ2 =
Z†(s)

Z∗(s) + Z†(s)
. (50)

A∗ enumeration guarantees that, for all conformations b ∈ B, E	(b) > E	(l), so exp(−E	(b)/RT ) <
exp(−E	(l)/RT ). As a result, Z†(s) < Z

′
(s), and δ2 < δ1. Therefore, the δ2 approximation, which is
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computed by BBK∗, is tighter than the δ1 approximation computed by iMinDEE/A∗/K∗.
The tighter δ2 bound allows BBK∗ to compute Z∗(s) to ε-approximation accuracy more efficiently than

iMinDEE/A∗/K∗. BBK∗ is more efficient for two reasons. First, the per-conformation cost of computing
Z∗(s) exceeds that of Z†(s). In particular, the per-conformation cost of computing any E(a) for Z∗(s) is
O(In2), where I is the number of iterations required for energy minimization [23]. In contrast, the cost
per conformation to compute any E	(b) for Z†(s) is merely O(n2). Consequently, BBK∗ computes Z†(s)
efficiently. Second, because BBK∗’s δ2 bound is tighter than iMinDEE/A∗/K∗’s δ1 bound, in practice BBK∗

avoids high costs by minimizing fewer conformations to compute Z∗(s) and obtain an ε-approximation of
Z(s) (see Fig. 6(A) in Appendix B.1). Thus, the ε-approximate value of Z∗(s) computed by BBK∗ is not
only tighter than the corresponding value computed by iMinDEE/A∗/K∗, but also more efficient to compute
(Appendix B.1, Fig. 6(B)). Therefore, BBK∗ computes SS-ε bounds more efficiently than iMinDEE/A∗/K∗.

B Supplementary Data
In this section, we provide data to further support claims made in Sec. 5. We first provide data showing

that BBK∗ computes SS-ε bounds more efficiently than does our previous best algorithm, iMinDEE/A∗/K∗.
We also provide data from the protein design runs in Sec. 5.3, where we compared designs with a fixed
backbone to designs with a flexible backbone.

B.1 Computational Experiments: Computing an SS-ε Bound in BBK∗

Figure 6: BBK∗ computes SS-ε bounds orders of magnitude more efficiently than iMinDEE/A∗/K∗. (A)
The number of energy-minimized conformations required to compute SS-ε bound for 51 design systems.
For the 26/51 designs completed by iMinDEE/A∗/K∗ within 7 days (left of vertical line), HOT improves
the efficiency of iMinDEE/A∗/K∗ by an average 1.2-fold, while BBK∗ improves efficiency by 25-fold, on
average. The combination of BBK∗+HOT is 38-fold more efficient than iMinDEE/A∗/K∗ on average. (B)
SS-ε bound running times for 51 design systems. Among designs completed by iMinDEE/A∗/K∗ in 7
days (left of the vertical line), HOT improves running times by an average of 1.1-fold, while BBK∗ and
BBK∗+HOT improve running times by an average of 389-fold and 277-fold, respectively.

Computation of SS-ε bounds is the main performance bottleneck of BBK∗. Each SS-ε bound requires
energy minimization ofO(qn) continuously flexible conformations in the worst case, where n is the number
of design positions and q is the maximum number of rotamers per design position. The iMinDEE/A∗/K∗
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algorithm [17, 34, 44] avoids exhaustive enumeration of conformations, however, by processing confor-
mations in gap-free increasing order of energy to compute a provably accurate SS-ε bound. In practice,
iMinDEE/A∗/K∗ computes an SS-ε bound after processing a very small percentage of all possible con-
formations. Nevertheless, the method can be computationally prohibitive for the largest design problems.
To address this limitation, we designed a new two-pass bounding algorithm (Appendix A.10) to accelerate
computation of each partition function. To compare the efficiency of our new two-pass SS-ε algorithm to
iMinDEE/A∗/K∗, we computed SS-ε bounds for the wild type sequences of the 51 protein-ligand systems
described in Appendix C. We modeled continuous flexibility for 8-14 residues at the protein-ligand interface,
resulting in conformation spaces ranging from 106 to 1010 conformations. Each continuous rotamer was per-
mitted to rotate freely within 9◦ of the modal χ-angle values in the Penultimate Rotamer Library [35]. We
performed minimized dead-end elimination pruning (minDEE) [17] with a pruning window [12] of at least
0.1 kcal/mol to prune high energy rotamers and set the SS-ε bound accuracy to 0.683 (see Appendix A.9
for justification). To further improve efficiency, we used higher order tuples (HOT) [24, 45] to reduce the
inaccuracy of the pairwise-minimized bounds. We terminated designs that did not complete after 7 days. A
detailed description of the 51 protein design systems in our experiments is provided in Appendix C.2.

B.1.1 Performance Comparison
While BBK∗ completed all 51 designs, iMinDEE/A∗/K∗ completed only 26. We now discuss results

for these 26 systems. We first measured efficiency using the number of energy-minimized conformations
necessary to compute K∗ to SS-ε accuracy for each sequence (Fig. 6(A)). Since each conformation energy
minimization is computationally expensive, efficiency is tantamount to reducing the number of minimiza-
tions. HOT, which reduces errors in the terms that are used to bound pairwise energies, did little to improve
efficiency, yielding a 1.2-fold improvement on average. On the other hand, BBK∗ improved efficiency by a
minimum of 6-fold, an average of 25-fold, and a maximum of 70-fold. BBK∗+HOT was even more efficient,
reducing the number of energy minimized conformations by a minimum of 6-fold, an average of 38-fold,
and a maximum of 171-fold.

When we use running times as our efficiency metric (Fig. 6(B)), we also observed that HOT improved
efficiency by only 1.1-fold. In contrast, BBK∗ improved efficiency by a minimum of 41-fold, an average of
389-fold, and a maximum of 1982-fold. The BBK∗+HOT combination improved running times by similar
margins: a minimum of 43-fold, an average of 277-fold, and a maximum of 944-fold. These data show that
BBK∗ not only substantially reduces the computational bottleneck associated with continuous rotamers in
protein design for affinity, but also solves problems that were too large to solve using iMinDEE/A∗/K∗.

B.2 Computational Experiments: Design with Coupled Continuous Side-Chain and Back-
bone Flexibility

Table 1: Re-design of Human Fibronectin F1:Staphylococcus aureus FNBPA-5 interface (PDB Id: 2RL0)
for binding affinity using a either a fixed or flexible FNBPA-5 backbone. The sequence space consisted of
the wild-type sequence, represented in bold font, and 15 single amino-acid polymorphisms.

Beginning of Table 1
Mutation Fixed backbone

K∗ ratio (log10)
Flexible backbone
K∗ ratio (log10)

Fixed backbone
sequence ranking

Flexible backbone
sequence ranking

F156, R191, I192, C194, F649,
D650, E651, E652, S653, T654

25.97 25.71 2 3

C194G 24.56 24.30 10 9
I192L 8.87 8.62 16 16
I192V 25.45 25.04 5 5
R191K 25.08 24.42 7 7
F156Y 25.93 25.15 4 4
F156V 25.29 24.35 6 8
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Continuation of Table 1
Sequence Fixed backbone

K∗ ratio (log10)
Flexible backbone
K∗ ratio (log10)

Fixed backbone
sequence ranking

Flexible backbone
sequence ranking

F156I 24.83 23.89 9 10
F156L 24.98 24.61 8 6
T654S 26.38 25.95 1 1
E651D 23.96 23.69 11 11
D650E 25.95 25.72 3 2
F649Y 22.12 15.10 15 15
F649V 22.79 22.50 13 13
F649I 23.01 22.57 12 12
F649L 22.67 22.28 14 14

End of Table 2

Table 2: Re-design of Human Fibronectin F1:Staphylococcus aureus FNBPA-5 interface (PDB Id: 2RL0)
for binding affinity using a either a fixed or flexible FNBPA-5 backbone. The sequence space consisted of
the wild-type sequence, represented in bold font, and 25 single amino-acid polymorphisms.

Beginning of Table 2
Sequence Fixed backbone

K∗ ratio (log10)
Flexible backbone
K∗ ratio (log10)

Fixed backbone
sequence ranking

Flexible backbone
sequence ranking

F156, R191, I192, C194, F649,
D650, E651, E652, S653, T654

25.81 25.83 5 5

C194G 24.40 24.42 15 15
I192L 8.70 8.73 26 26
I192V 25.29 25.08 8 10
R191K 24.92 24.85 11 11
F156Y 25.77 25.63 6 7
F156V 25.13 25.08 10 9
F156I 24.67 24.62 13 13
F156L 24.82 24.79 12 12
T654S 26.23 26.16 3 3
T654N 26.33 26.24 2 2
T654Q 26.48 26.48 1 1
S653T 25.27 25.29 9 8
S653N 26.04 26.02 4 4
S653Q 23.61 23.65 18 17
E652D 23.66 23.64 17 18
E652H 24.43 24.42 14 14
E652G 23.83 23.76 16 16
E651H 22.41 22.41 24 24
D650E 25.77 25.76 7 6
D650H 22.50 22.51 23 23
F649Y 21.98 15.14 25 25
F649V 22.63 22.60 21 21
F649I 22.85 22.81 20 20
F649L 22.50 22.55 22 22
F649M 23.14 23.16 19 19

End of Table 1

C Details of Protein Designs
C.1 MS Bound Designs
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Table 3: Protein design test cases for Section 5. We varied the number of sequences in each protein-ligand
system by adjusting the number of simultaneously mutable residues, n, from 1 to 4, yielding sequence spaces
whose size s ranged from 10 to 107. Each mutable residue was also modeled as continuously flexible, as
described in Section 5. All runs were set to enumerate the five best sequences.

Beginning of Table 3
PDB
code

Protein-ligand interface Mutable / flexible
residues

Design 1:
n, s

Design 2:
n, s

Design 3:
n, s

Design 4:
n, s

3CAL Fibronectin f1 modules2-3 /
staphylococcus aureus fnbpa-5

3, 40, 42, 100, 101,
103, 104, 105

1, 97 2, 4033 3, 96769 4, 1451521

2RF9 Egfr kinase / mig6 peptide 346, 350, 351, 352,
881, 911, 917

1, 86 2, 3026 3, 60482 4, 725762

4Z80 Toxoplasma gondii ama4 di-dii-
egf1 / tgron2l1 peptide

210, 215, 258, 280,
281, 1301, 1312,
1318

1, 119 2, 6092 3, 179641 4, 2612738

2RFE Egfr kinase / mig6 peptide 352, 357, 358, 359,
360, 904, 906, 924,
928

1, 110 2, 5186 3, 145154 4, 2612738

2RFD Egfr kinase / mig6 peptide 352, 358, 359, 908,
924, 929

1, 74 2, 2162 3, 34562 4, 311042

2HNV Q58v mutant of bovine
neurophysin-i

244, 267, 295, 307,
336, 349, 376

1, 86 2, 3026 3, 60482 4, 725762

5IT3 Swirm domain of human lsd1 3, 30, 33, 37, 134,
150, 153, 170

1, 91 2, 3538 3, 79273 4, 1108081

2HNU Bovine neurophysin-i 191, 193, 228, 236,
269, 273, 309, 314,
317

1, 110 2, 5186 3, 145154 4, 2612738

4JDD Estrogen receptor alpha / 14-3-3
protein

174, 181, 222, 226,
230, 591, 593

1, 85 2, 3025 3, 60481 4, 725761

4PXF Opsin / finger-loop peptide 72, 75, 76, 135,
139, 250, 310

1, 85 2, 3025 3, 60481 4, 725761

4WEM F4 fimbrial adhesin faeg / llama
antibody v1

29, 62, 281, 283,
900, 902, 905, 909

1, 96 2, 3949 3, 93745 4, 1391041

3MA2 Metalloproteinase mt1-mmp /
timp-1

115, 274, 277, 281,
329, 338, 367, 373

1, 98 2, 4034 3, 96770 4, 1451522

1GWC Glutathione s-transferase 53, 64, 67, 71, 78,
93, 100, 101, 104

1, 14 2, 1249 3, 52417 4, 1257985

5A6Y Lecb lectin / mannose-
alpha1,3mannoside

319, 334, 336, 338,
341, 361, 389, 433

1, 97 2, 4033 3, 96769 4, 1451521

3U7Y Nih45-46 fab / gp120 of 93th057
hiv

279, 280, 460, 467,
558, 602, 789, 790

1, 97 2, 4033 3, 96769 4, 1451521

3RJQ Anti-hiv llama vhh antibody a12
/ c186 gp120

102, 105, 109, 113,
368, 601, 629, 695

1, 94 2, 3783 3, 87841 4, 1274401

2XQQ Human dynll2 / ac-srgtqte 4, 6, 61, 62, 73, 77,
84

1, 85 2, 3025 3, 60481 4, 725761

4KT6 Beta-nad+ glycohydrolase/ifs 103, 112, 160, 226,
383, 384, 386

1, 85 2, 3025 3, 60481 4, 725761

3BUA Trf2 trfh / apollo peptide 84, 118, 119, 120,
502, 506, 509, 510

1, 98 2, 4034 3, 96770 4, 1451522

4HEM Llama vhh-02 / tp901-1 120, 122, 145, 163,
422, 426, 455, 457

1, 95 2, 3865 3, 90721 4, 1330561

5DC0 Monobody gg3 / abl1 sh2 do-
main

54, 58, 60, 164,
165, 187, 233, 234

1, 91 2, 3538 3, 79273 4, 1108081

5D68 Krit1 ard-ferm 297, 321, 322, 327,
330, 549, 603

1, 85 2, 3025 3, 60481 4, 725761

1B6C Tgf-beta receptor / fkbp12 36, 37, 46, 59, 82,
90, 195, 196

1, 96 2, 3949 3, 93745 4, 1391041
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Continuation of Table 3
PDB
code

Protein-ligand interface Mutable / flexible
residues

Design 1:
n, s

Design 2:
n, s

Design 3:
n, s

Design 4:
n, s

3BU8 Trf2 trfh / tin2 peptide 105, 116, 117, 119,
124, 257, 258

1, 86 2, 3026 3, 60482 4, 725762

5EM2 Erb1-ytm1 113, 151, 318, 446,
481, 483, 488

1, 85 2, 3025 3, 60481 4, 725761

4WWI Staphylococcal protein a / hu-
man igg fc

10, 13, 17, 31, 253,
434, 435

1, 85 2, 3025 3, 60481 4, 725761

3EB6 Ciap2 ring domain / ubch5b 553, 559, 561,
1101, 1104, 1109,
1112, 1115

1, 97 2, 4033 3, 96769 4, 1451521

2XGY Lentivirus (relik) capsid / cy-
clophilin a

76, 87, 89, 93, 109,
112, 184, 189, 250

1, 109 2, 5185 3, 145153 4, 2612738

2WZP Lactococcal phage binding pro-
tein

202, 207, 242, 244,
630, 631, 655, 699,
703

1, 103 2, 4618 3, 121717 4, 2059345

4ZNC Human igg / staphylococcal pro-
tein a

30, 36, 44, 47, 373,
398, 400

1, 85 2, 3025 3, 60481 4, 725761

2XXM Hiv-1 capsid protein / camelid
vhh

2, 3, 6, 7, 10, 169,
186, 211

1, 97 2, 4033 3, 96769 4, 1451521

2Q1E Amyloidogenic kappa1 bence
jones protein

254, 266, 314, 318,
418, 425, 426, 427

1, 98 2, 4034 3, 96770 4, 1451522

1A0R Phosducin / transducin beta-
gamma

311, 313, 332, 601,
605, 696, 697, 698,
729

1, 106 2, 4897 3, 133057 4, 2322433

1RX2 Dihydrofolate reductase, folate
and NADPH

27, 28, 31, 50, 54,
94, 160

1, 103 2, 4336 3, 98261 4, 1252816

1AMU Gramicidin synthetase 1 / amp 374, 413, 414, 427,
429, 432, 441, 443

1, 91 2, 3538 3, 79273 4, 1108081

2RL0 Fibronectin f1 modules 4-5 /
staphylococcus aureus fnbpa-5

649, 650, 651, 654,
156, 172, 192, 193

1, 97 2, 4033 3, 96769 4, 1451521

4LAJ Hiv-1 yu2 envelope gp120
glycoprotein / cd4-mimetic
miniprotein

421, 434, 632, 627,
700, 707, 710, 712

1, 97 2, 4033 3, 96769 4, 1451521

1B74 Glutamate racemase 57, 220, 222, 223,
224, 243, 245, 252

1, 97 2, 4033 3, 96769 4, 1451521

5DC4 Monobody as25 / abl1 sh2 do-
main

35, 44, 47, 75, 77,
81, 82, 158, 234

1, 109 2, 5185 3, 145153 4, 2612737

4WYQ Dicer-trbp 271, 277, 278, 362,
386, 387

1, 73 2, 2161 3, 34561 4, 311041

4WYU Scribble pdz34 tandem 2, 3, 5, 6, 26, 29, 81 1, 85 2, 3025 3, 60481 4, 725761
4BTE Dj-1 cu(i) 79, 83, 89, 95, 111,

115
1, 73 2, 2161 3, 34561 4, 311041

3GXU Eph receptor / ephrin 27, 43, 135, 614,
618, 624, 625, 628

1, 91 2, 3538 3, 79273 4, 1108081

3K3Q Llama antibody / c. Botulinum
neurotoxin

98, 103, 107, 219,
222, 349, 354, 357

1, 97 2, 4033 3, 96769 4, 1451521

2P49 Camelid single-domain vhh anti-
body / rnase a

56, 64, 66, 68, 71,
106, 150, 154, 228

1, 110 2, 5186 3, 145154 4, 2612738

4MDK Cdc34-ubiquitin-cc0651 com-
plex

595, 600, 603, 605,
889, 930, 951

1, 85 2, 3025 3, 60481 4, 725761

2Q2A Artj 144, 145, 149, 153,
156, 385, 386, 390,
394

1, 109 2, 5185 3, 145153 4, 2612737

4U3S Coh3scab-xdoc m1scaa 79, 90, 131, 134,
174, 178, 180

1, 85 2, 3025 3, 60481 4, 725761
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PDB
code

Protein-ligand interface Mutable / flexible
residues

Design 1:
n, s

Design 2:
n, s

Design 3:
n, s

Design 4:
n, s

2P4A Camelid affinity matured single-
domain vhh antibody / rnase a

132, 135, 140, 142,
377, 380, 381, 385,
387

1, 110 2, 5186 3, 145154 4, 2612738

4JC3 Estrogen receptor alpha / 14-3-3
protein

171, 174, 175, 222,
226, 593, 595

1, 85 2, 3025 3, 60481 4, 725761

1TP5 Pdz3 domain of psd-95 / kketwv 325, 326, 328, 340,
342, 372, 422, 424,
425

1, 109 2, 5185 3, 145153 4, 2612737

End of Table 3

C.2 SS-ε Bound Designs

Table 4: Protein design test cases for Appendix B.1. 8-14 residues at each protein-ligand interface were
modeled as both mutable and flexible. l is the size of the conformation space after dead-end-elimination
pruning.

Beginning of Table 4
PDB
code

Protein-ligand interface Mutable / flexible residues l

3CAL Fibronectin f1 modules2-3 / staphylococcus aureus
fnbpa-5

3, 39, 40, 42, 100, 101, 103, 104, 105,
106

8566614

2RF9 Egfr kinase / mig6 peptide 337, 346, 350, 351, 352, 881, 885, 888,
908, 911, 917

1887923220

4Z80 Toxoplasma gondii ama4 di-dii-egf1 / tgron2l1 peptide 210, 211, 215, 249, 252, 258, 280, 281,
1301, 1305, 1310, 1312, 1318

3375435880

2RFE Egfr kinase / mig6 peptide 352, 357, 358, 359, 360, 904, 905, 906,
924, 925, 928

2478051684

2RFD Egfr kinase / mig6 peptide 352, 357, 358, 359, 360, 904, 908, 920,
924, 928, 929

1094527572

2HNV Q58v mutant of bovine neurophysin-i 244, 255, 257, 267, 295, 296, 307, 336,
338, 349, 376

335437578

5IT3 Swirm domain of human lsd1 3, 30, 33, 34, 37, 41, 134, 149, 150,
153, 154, 170

37773033760

2HNU Bovine neurophysin-i 191, 192, 193, 194, 228, 236, 237, 269,
272, 273, 275, 309, 314, 317

2766092544

4JDD Estrogen receptor alpha / 14-3-3 protein 60, 174, 178, 181, 182, 222, 226, 230,
591, 593

5654890

4PXF Opsin / finger-loop peptide 72, 75, 76, 77, 135, 138, 139, 249, 250,
253, 310, 311

1046727528

4WEM F4 fimbrial adhesin faeg / llama antibody v1 28, 29, 31, 62, 281, 283, 900, 902, 905,
906, 909

1703340880

3MA2 Metalloproteinase mt1-mmp / timp-1 115, 274, 277, 281, 328, 329, 336, 338,
367, 373, 375

2105697020

1GWC Glutathione s-transferase 52, 53, 64, 67, 71, 78, 93, 95, 99, 100,
101, 104

345408644

5A6Y Lecb lectin / mannose-alpha1,3mannoside 245, 317, 319, 334, 336, 338, 341, 361,
389, 431, 433, 448, 450

3151995360

3U7Y Nih45-46 fab / gp120 of 93th057 hiv 279, 280, 455, 460, 467, 558, 561, 602,
789, 790

263980885

3RJQ Anti-hiv llama vhh antibody a12 / c186 gp120 102, 105, 109, 113, 368, 601, 629, 695,
697

118514120

2XQQ Human dynll2 / ac-srgtqte 4, 6, 61, 62, 64, 73, 75, 77, 82, 84 560770921
4KT6 Beta-nad+ glycohydrolase / ifs 103, 112, 115, 160, 226, 383, 384, 386 137931048
3BUA Trf2 trfh / apollo peptide 80, 84, 118, 119, 120, 122, 502, 506,

507, 509, 510
1397500768
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PDB
code

Protein-ligand interface Mutable / flexible residues l

4HEM Llama vhh-02 / tp901-1 119, 120, 122, 145, 163, 380, 422, 426,
455, 457

341807264

5DC0 Monobody gg3 / abl1 sh2 domain 17, 54, 58, 60, 164, 165, 187, 223, 231,
233, 234

751347450

5D68 Krit1 ard-ferm 297, 320, 321, 322, 327, 330, 331, 549,
596, 599, 600, 603, 604

494002390

1B6C Tgf-beta receptor / fkbp12 36, 37, 46, 59, 82, 90, 99, 195, 196,
197, 200

28152780

3BU8 Trf2 trfh / tin2 peptide 102, 105, 116, 117, 119, 124, 127, 257,
258, 266

982110380

5EM2 Erb1-ytm1 113, 151, 181, 196, 227, 318, 390, 446,
481, 483, 484, 486, 488

49761924

4WWI Staphylococcal protein a / human igg fc 10, 11, 13, 14, 17, 28, 31, 35, 252, 253,
311, 434, 435

1676312640

3EB6 Ciap2 ring domain / ubch5b 553, 559, 561, 1101, 1105, 1108, 1109,
1112, 1115

144471756

2XGY Lentivirus (relik) capsid / cyclophilin a 76, 87, 89, 93, 109, 112, 184, 189, 250,
251, 255

66722600

2WZP Lactococcal phage binding protein 202, 207, 242, 244, 630, 631, 655, 699,
703

20490720

4ZNC Human igg / staphylococcal protein a 30, 33, 36, 43, 44, 47, 51, 373, 398, 400 17225115
2XXM Hiv-1 capsid protein / camelid vhh 2, 3, 6, 7, 10, 169, 173, 182, 186, 211 194541095
2Q1E Amyloidogenic kappa1 bence jones protein 254, 266, 256, 309, 314, 316, 318, 365,

418, 423, 425, 426, 427
123252930

1A0R Phosducin / transducin beta-gamma 42, 311, 313, 332, 601, 605, 696, 697,
698, 729

63737408

1RX2 Dihydrofolate reductase, folate and NADPH 5, 27, 28, 31, 46, 50, 54, 94, 160 71389162
1AMU Gramicidin synthetase 1 / amp 374, 413, 414, 427, 429, 432, 439, 441,

443, 450
151484688

2RL0 Fibronectin f1 modules 4-5 / staphylococcus aureus
fnbpa-5

649, 650, 651, 654, 156, 172, 191, 192,
193, 194

592909440

4LAJ Hiv-1 yu2 envelope gp120 glycoprotein / cd4-mimetic
miniprotein

419, 421, 434, 632, 627, 700, 702, 707,
710, 712

153348639

1B74 Glutamate racemase 30, 57, 61, 220, 221, 222, 223, 224,
243, 245, 246, 252

508170560

5DC4 Monobody as25 / abl1 sh2 domain 35, 44, 47, 75, 77, 81, 82, 158, 161,
162, 164, 168, 234

7642166616

4WYQ Dicer-trbp 206, 271, 274, 277, 278, 281, 362, 363,
383, 386, 387

264373872

4WYU Scribble pdz34 tandem 2, 3, 4, 5, 6, 26, 27, 29, 36, 49, 81, 176 11263055220
4BTE Dj-1 cu(i) 72, 79, 82, 83, 89, 92, 95, 102, 111,

112, 115
140435652

3GXU Eph receptor / ephrin 27, 43, 78, 135, 560, 614, 616, 618,
624, 625, 628

222696544

3K3Q Llama antibody / c. Botulinum neurotoxin 98, 100, 101, 102, 103, 107, 219, 222,
349, 354, 357, 358, 387

1574424348

2P49 Camelid single-domain vhh antibody / rnase a 56, 64, 65, 66, 68, 71, 106, 148, 150,
153, 154, 222, 228

5888750400

4MDK Cdc34-ubiquitin-cc0651 complex 595, 599, 600, 603, 605, 889, 923, 930,
951, 953

406322880

2Q2A Artj 144, 145, 146, 149, 152, 153, 156, 385,
386, 390, 393, 394, 397

23784865920

4U3S Coh3scab-xdoc m1scaa 36, 79, 81, 90, 94, 131, 133, 134, 135,
174, 177, 178, 180

830160768

2P4A Camelid affinity matured single-domain vhh antibody /
rnase a

132, 135, 140, 141, 142, 143, 377, 380,
381, 385, 386, 387, 388

1053662176
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4JC3 Estrogen receptor alpha / 14-3-3 protein 49, 122, 171, 174, 175, 222, 226, 230,
593, 595

14794088

1TP5 Pdz3 domain of psd-95 / kketwv 325, 326, 328, 340, 342, 372, 421, 422,
423, 424, 425

966734976

End of Table 4

C.3 Fixed Backbone vs. Flexible Backbone Protein Designs

Table 5: Protein design test cases for Sec. 5.3. 10 residues at the F1:FNBPA-5 interface were modeled as
both mutable and flexible. s is the number of sequences in the design, and l is the size of the conformation
space after dead-end-elimination pruning.

Beginning of Table 5
Design Protein-ligand interface Mutable / flexible residues Backbone

PDB code(s)
s l

1 Fibronectin f1 modules 4-5 / staphylo-
coccus aureus fnbpa-5

156, 191, 192, 194, 649, 650,
651, 652, 653, 654

2RL0 16 9030

2 Fibronectin f1 modules 4-5 / staphylo-
coccus aureus fnbpa-5

156, 191, 192, 194, 649, 650,
651, 652, 653, 654

2RL0 26 267964

3 Fibronectin f1 modules 4-5 / staphylo-
coccus aureus fnbpa-5

156, 191, 192, 194, 649, 650,
651, 652, 653, 654

2RL0, 2RKY 16 12796302

4 Fibronectin f1 modules 4-5 / staphylo-
coccus aureus fnbpa-5

156, 191, 192, 194, 649, 650,
651, 652, 653, 654

2RL0, 2RKY 26 2263554042

End of Table 5
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