
LUTE (Local Unpruned Tuple Expansion): Accurate continuously

flexible protein design with general energy functions and

rigid-rotamer-like e�ciency

Supplementary Information

Mark A. Hallen1, Jonathan D. Jou1, and Bruce R. Donald1,2,3,⇤

Departments of 1 Computer Science and 2 Chemistry, Duke University, Durham, NC 27708 3 Department

of Biochemistry, Duke University Medical Center, Durham, NC 27710

*Corresponding author, brd+jcb16@cs.duke.edu

The following is supplementary information (SI) that provides additional information to substantiate the

claims of the paper. It is available online at

http://www.cs.duke.edu/donaldlab/Supplementary/jcb16/lute/

Section A describes the least-squares method used to calculate the LUTE matrix. Section B describes

what terms need to be included in the energy matrix. Each term corresponds to a tuple of RCs at di↵erent

positions. Section C describes how a pruning interval, a parameter used for pruning in continuously flexible

designs, can be computed for several types of LUTE calculations. Section D provides further details of

our implementation of LUTE combined with the iMinDEE [Gainza et al., 2012] algorithm for sequence and

conformational search. Section E analyzes the complexity of LUTE combined with the BWM⇤ algorithm for

sequence and conformational search. It includes a proof of Theorem 3.1. Section F presents novel pruning

algorithms that we have developed to solve some of the larger continuously flexible designs that LUTE has

made possible. Section G provides details of the protein design test cases described in Section 3.

A Calculation of expansion by least squares

The energy (as represented by LUTE) of a conformation r is a linear function of all the unpruned tuple

energies m(t), given by
P
t2Tr

m(t) =
P
t2T

m(t)It2Tr , where the indicator function Ic is 1 if c is true and 0

otherwise. Thus, once we have decided which tuples to include in T , we can use least squares to obtain the

energy m(t) for each tuple t 2 T .

We draw two sample sets for each fit—one for training and one for cross-validation. For each r in either

of the sample sets, we evaluate the ground-truth E(r) as described in Eq. (2) using local minimization. Each

sample set is chosen such that each unpruned tuple appears in at least 10 samples. Furthermore, no sample is

1

allowed to contain any pruned tuples. To achieve this, we iterate through all the tuples. If the tuple appears

in less than 10 samples, then we draw enough samples to cover the di↵erence. To draw a sample containing

a tuple t, we first assign the RCs in t to their respective residues. Then we iterate through each remaining

position in random order, picking a random RC that does not introduce any pruned tuples into the sample.

Because pairs and triples can be pruned, it is possible for this sampling process to reach a point where no

RCs are available for a given position. Thus, if the first 5 random sampling attempts are unsuccessful, then

we switch to depth-first search (with randomized ordering of RCs) to search for a sample. This way, if there

is a sample containing t, we are guaranteed to find it, and if not, then t can be pruned.

The least-squares matrix for large problems is too big to allow e�cient direct solution. Hence, we use

conjugate gradient [Nocedal and Wright, 2006] on the least-squares normal equations, which is accurate and

very e�cient, especially since the least-squares matrix is sparse.

B Selection of tuples to include

The limiting behavior of LUTE is favorable. As we expand the set T , we must eventually approach perfect

accuracy, because if T is the set of all tuples of RCs at di↵erent positions, then m can represent E(r) for

each full RC list r explicitly.

If we assume locality of E(r) (see Section 1), we can expect inaccuracies to diminish fairly quickly with

increasing size of T , because the component of E(r) modeling the interactions of a residue i will depend only

on the RCs assigned to residues fairly close in space to i. As a result, we expect a relatively compact LUTE

expansion for any practical protein design problem.

For many designs, a pairwise expansion su�ces—i.e., T is the set of RC pairs (ir, js) where i > j. The

accuracy of this pairwise expansion can be enhanced by first performing triples pruning—in this case, if a

triple t is pruned, then we include t in T and set m(t) =?, but all t0 2 T such that m(t0) 6=? are pairs.

However, sometimes higher accuracy is needed; we thus select additional, unpruned triples to add to T .

To exploit locality, the triples are chosen at residue positions that have strong pairwise interactions. First,

the interaction between each residue pair is quantified by maximizing the absolute value of the minimized

pairwise interaction energy over all RC pairs at the residue pair. Then, for each residue position i, the

2 residues j and k interacting most strongly with i are identified (a higher number than 2 can be used if

indicated by the least-squares residual). The residue pairs (i, j) and (i, k) are heuristically deemed “strongly

interacting” pairs, and any residue triple containing at least two strongly interacting pairs is deemed a

strongly interacting residue triple. Finally, all RC triples at strongly interacting residue triples are added to

T . Though LUTE can support higher-order tuples than triples, we have not found this to be necessary so

far.

2

C Choosing a pruning interval

If we know which RCs to prune, then the computation by least-squares of the LUTE matrix does not

depend on the type of search problem we are solving (it can be single-state or multistate, and GMEC-based

or ensemble-based). However, the most e�cient pruning algorithm for RCs in a continuous search space,

iMinDEE [Gainza et al., 2012], requires as input a pruning interval in addition to a pairwise lower-bound

energy matrix. The pruning interval is an upper bound on the gap between the optimal conformation and

the lowest lower bound on a conformational energy in our search space, computed based on lower bounds

on pairwise energies. The pruning is more e�cient if this upper bound is relatively tight, and there are a

few ways to obtain a valid but relatively tight bound. We will now discuss how this can be done for either

single-state or multistate protein designs.

For single-state designs that aim to minimize an energy function with respect to sequence and (continuous)

conformation, the method described in [Gainza et al., 2012] to obtain a pruning interval is appropriate.

For multistate designs, two algorithms that are highly compatible with LUTE are K⇤ [Lilien et al., 2005,

Georgiev et al., 2008] and comets [Hallen and Donald, 2015], and each of these algorithms o↵ers an ef-

fective way to compute a pruning interval. K

⇤, a partition function-based binding optimization algo-

rithm, provides methods to check if too many RCs have been pruned so that some can be unpruned if

needed [Georgiev et al., 2008]. This unpruning can be done by enlarging the pruning interval. comets

optimizes, with respect to sequence, linear combinations of conformationally optimized energies of several

protein states (bound states with di↵erent ligands, unbound states, etc.) Pruning is performed separately

for each state, using type-dependent dead-end elimination [Yanover et al., 2007]. Generally, for purposes of

ensuring stability of each state, we will apply a constraint in comets calculations demanding that the opti-

mized conformation energy for our optimized sequence be below some threshold. This threshold is our upper

bound on the optimized energy for each state. Likewise, for each state, we can use standard protein design

algorithms like DEE/A* [Leach and Lemon, 1998] to compute a lower bound based on pairwise energies for

the optimal conformation over all sequences. Putting these bounds together, we obtain a pruning interval

for each state.

Using these techniques, we can obtain a valid but relatively tight pruning interval and thus an appropriate

LUTE energy matrix for many kinds of single-state and multistate designs (e.g., see Figs. 2, 3, 4, and S3).

D iMinDEE with LUTE

iMinDEE [Gainza et al., 2012] calculates the GMEC for a protein system, and can also enumerate an ensem-

ble of the lowest-energy conformations of a protein in gap-free ascending order of minimized conformational

energy. We have implemented iMinDEE to run along with LUTE as part of the osprey [Gainza et al., 2013,

3

Georgiev et al., 2008, Georgiev et al., 2009] open-source protein design software package. As in previous ver-

sions of iMinDEE, we estimate a pruning interval, prune based on that interval, calculate the GMEC, and

then repeat with a larger interval if needed (at most one repeat is needed; see [Gainza et al., 2012] for a

proof). Thus, the protocol consists of the following steps:

1. Precalculate the matrix of energy lower bounds.

2. Prune using iMinDEE [Gainza et al., 2012].

3. Compute an EPIC matrix [Hallen et al., 2015].

4. Prune using EPIC (see Section F.2).

5. Perform LUTE fitting (see Section A).

6. Prune based on the LUTE matrix, using rigid DEE [Desmet et al., 1992], since the LUTE matrix gives

an accurate discrete expansion of the energy and thus admits pruning without the iMinDEE pruning

interval.

7. Calculate the lower pairwise lower-bound. This is just like enumerating the first conformation from

A* in iMinDEE. Though this step is in general NP-hard, very e↵ective algorithms are available for it,

as we have shown in [Roberts et al., 2015].

8. Compute the GMEC using rigid A* [Leach and Lemon, 1998].

9. If needed, repeat the process (from step 2 onward) using a higher iMinDEE pruning interval; see

[Gainza et al., 2012].

So if we are calculating the GMEC, then the only NP-hard steps here are the pairwise lower-bound

calculation and the GMEC calculation on the LUTE matrix, each of which are of similar complexity to

enumerating the first conformation from iMinDEE, and comparable to computing a rigid GMEC. Thus, for

large designs, the entire LUTE-based minimized GMEC (minGMEC) calculation is of similar complexity

to enumerating the first conformation in traditional iMinDEE, or simply to performing a rigid GMEC

calculation.

E BWM

⇤
with LUTE

We provide here a proof of Theorem 3.1, which establishes the time complexity of conformational search

with LUTE as a function of residue interaction graph branch-width.

4

High-level intuition. The theoretical guarantees of BWM⇤ [Jou et al., 2015] are unchanged across di↵er-

ent discrete formulations of the protein design problem. Given a sparse energy function, the corresponding

sparse graph and branch-decomposition can be computed. BWM⇤ computes the GMEC of the corresponding

energy function in time exponential merely in w, the branch-width of the branch-decomposition. The time

cost is polynomial in the number of residues in the system, n, and the maximum number of RCs per residue,

q.

To realistically describe a protein design system, a LUTE energy function need only have nonzero coe�-

cients for tuples whose interactions are nonnegligible, and thus we can compute a sparse residue interaction

graph for it (Lemma E.1). As such, when a LUTE energy matrix whose residue interaction graph has branch-

width w is provided as input to the protein design problem, BWM⇤ computes the minimized GMEC in time

exponential in w, enumerates a gap-free list of conformations in O(n log q) additional time, and computes a

gap-free ensemble that is guaranteed to contain the minGMEC.

Lemmata and Theorems. For an n-residue protein design with at most q rotamers at each position, let

E be a LUTE energy function whose tuples have arity at most k. We can then define the residue interaction

graph of the LUTE energy function as follows:

Definition. Let E(r) =
P

r2Tr

m(r) be a LUTE energy function, where m : T �! R [{?} maps RC tuples

to real coe�cients. The sparse residue interaction graph of E(r) is defined to be a hypergraph G

0 = (V, T),

where V is the set of all mutable residues.

Lemma E.1. For a given LUTE energy function E(r) with finite tuple arity k, G0 can be computed in O(nk)

time.

Proof. There are at most
�n
k

�
tuples, corresponding to at most

�n
k

�
=O(nk) edges in G

0.

Lemma E.2 (Given in [Jou et al., 2015]). Given a branch-decomposition with branch-width w, BWM⇤ com-

putes the GMEC of the sparse energy function in O(nw2
q

3
2w) time, and enumerates each additional confor-

mation in order of increasing sparse energy in O(n log q) time.

Theorem 3.1. For a LUTE energy function whose residue interaction graph has branch-width w, the GMEC

can be computed in O(nw2
q

3
2w + �t) time and O(nwq

3
2w) space, and each additional conformation can be

enumerated in order of LUTE energy in O(n log q) time and O(n) space.

Proof. This follows from Lemmas E.1 and E.2.

5

F Pruning enhancements

In order to complete some of the larger designs in Section 3, we found it necessary to enhance our prun-

ing capabilities somewhat compared to previous work. Pruning consisted of Goldstein singles and pairs,

and triples at selected, highly interacting triples of residues (using the triple selection criteria in Section

B). In addition to this triple selection, we introduced two novel pruning enhancements, which build on

iMinDEE [Gainza et al., 2012]: a “competitor pruning” technique that speeds up pruning substantially with

minimal loss of pruning power, and a “continuous pruning” technique that uses bounds on minimized ener-

gies of partial conformations to prune RCs and tuples of RCs that would otherwise require a much tighter

iMinDEE pruning interval to prune.

F.1 Competitor pruning

DEE and related pruning algorithms can prune an RC or tuple of RCs by comparing its energies to those of

a “competitor”, which is another RC at the same residue (or tuple at the same tuple of residues). Previous

implementations of these algorithms either allowed any unpruned RC or tuple to act as a competitor, or they

only allowed a few “magic bullets,” [Gordon and Mayo, 1998] which can reduce pruning power significantly.

For some of the larger designs, pruning was the bottleneck, so it was important to have a method to speed up

pruning without sacrificing much pruning power. We found that using a reduced set of competitors—the set

of RCs that are unpruned using the iMinDEE pruning condition [Gainza et al., 2012] with iMinDEE interval

0—results in such a speedup. To use this set, we begin pruning with a “competitor pruning” procedure, in

which we perform pruning at iMinDEE interval 0. However, this pruning does not actually remove RCs and

tuples from consideration. Rather, it removes them from the set of competitors that will be used in the the

actual pruning step (Fig. S1).

Competitor pruning is fast because pruning with a 0 interval allows a large amount of single-RC pruning,

so we spend much less time iterating through pairs. The set of competitors chosen this way is also typically

much smaller than the full set of unpruned RC tuples. Hence, the actual pruning step is sped up significantly

by using competitor pruning first. We have observed pruning power to be reduced very little when using

competitor pruning, and the following analysis suggest why this is the case.

Suppose we are performing Goldstein pruning with a fixed set of witnesses. Then any RC tuple t1 that

can be pruned at all can be pruned using a competitor t2 such that t2 cannot be pruned with iMinDEE

interval 0. We can show this by taking note of two facts. (1) Pruning with iMinDEE interval 0 is transitive

with a fixed set of witnesses. That is, if tuple t1 can be pruned using competitor t2, and t2 can be pruned

using competitor t3, then t1 can be pruned using competitor t3. (2) If an RC tuple t1 can be pruned using

competitor t2 at an iMinDEE interval I > 0, then t1 can be pruned using t2 at iMinDEE interval 0. Now,

6

Figure S1: Competitor pruning reduces the set of RCs we need to consider as competitors
during iMinDEE pruning. In iMinDEE pruning [Gainza et al., 2012], we take a “candidate” RC (or RC
pair or triple) ir and compare it to another RC (or pair or triple) it by evaluating the pruning checksum
E (it)�E (it)+

P
j 6=i

min
s

E (ir, js)�E (it, js). We compare this checksum to the pruning interval I, where

E is a lower bound on a one-body or pairwise interaction energy. If the checksum exceeds I, then we
can eliminate ir as a possible constituent of the GMEC. Without competitor pruning (top), all RC tuples
(blue) need to be considered as candidates or competitors, and thus the pruning condition (green) must
be evaluated for every pair of tuples. But with competitor pruning (bottom), we first perform a modified
pruning protocol to quickly eliminate those tuples that will not be e↵ective as competitors. Then, when
performing our actual pruning (to eliminate non-GMEC RC tuples), we can do so more quickly because we
have less competitors to consider.

7

suppose that t1 can be pruned using t2 at an iMinDEE interval I. There are two cases: t2 can be pruned

at iMinDEE interval 0, or it cannot. If it can be pruned using a tuple t3 at pruning interval 0, then t1 can

be pruned using t3 at iMinDEE interval I (using notes 1 and 2). Recursively applying the same argument

to t3, we can be certain that t1 can be pruned using a competitor that cannot be pruned with iMinDEE

interval 0. In practice, a pruning cycle removes witnesses at each iteration, so the condition about a fixed

set of witnesses does not strictly hold. But we have still observed pruning power to be reduced very little

when using competitor pruning.

F.2 Continuous pruning

Another issue that can reduce pruning e�ciency in iMinDEE is the fact that the lower bound on a candidate

RC tuple r may not be very tight. We can tighten it by including the minimized partial conformational

energy for the partial conformation consisting of the RCs in r, as in the A* step for EPIC [Hallen et al., 2015].

Suppose we have a lower bound for the energy of a partial conformation p based on pairwise energies. As

discussed in [Hallen et al., 2015], this bound remains valid if we add to it the minimized sum c of EPIC

terms for all intra+shell and pairwise polynomials that represent RCs or pairs in p. iMinDEE is also based

on this lower bound (the partial conformation here is the tuple we are trying to prune), so we can add c to

the iMinDEE checksum (the left-hand side of the pruning condition) and still have a valid pruning condition

with the same pruning interval I. c is always nonnegative, so continuous pruning is always at least as good

as regular iMinDEE. c = 0 if the partial conformation is just a single RC, but may be quite large if the

partial conformation contains RCs that do not pack together well, which is exactly when we want to prune.

E↵ectively, continuous pruning allows us to group together terms in our lower bound on the conformational

energy, so that the bound is tighter (Fig. S2).

8

Figure S2: Continuous pruning increases pruning power by using a tighter lower bound on
conformational energy. iMinDEE pruning is based on lower bounds on conformational energy, which are
constructed by adding up lower bounds on pairwise interaction energies (red arrows) and one-body energies
(circles). Without continuous pruning (left), each flexible residue and each flexible residue pair has its
lower-bound energy computed separately. But with continuous pruning (right), if we add the continuous
contribution c for a pair of RCs, then we e↵ectively replace the three lower-bound terms for that pair (the two
one-body energies and the pairwise interaction energy) with a single lower bound on the energy of the pair.
This tighter bound can significantly increase pruning power, because if a residue pair has an unavoidable
clash, the lower bound on the pair’s internal energy is likely to show this even if each of the three constituent
energies is individually capable of continuously minimizing to a better value.

G Details of protein design runs

Figure S3: LUTE brings rigid-rotamer-like e�ciency to provably accurate multistate designs
with continuous flexibility. Top: The number of sequences considered explicitly in continuously flexible
designs using LUTE with comets (blue) is similar to the number considered in discrete comets designs
on the same system (red) and far less than the total number of sequences in the search (green). Bottom:
In the same designs, the number of full conformational optimizations needed is also similar for the contin-
uous (LUTE, blue) and discrete (red) designs. Usually, only the optimal sequence (or top 5 if enumerating
5 sequences) required full conformational optimization, while exhaustive search must fully conformation-
ally optimize every sequence in every state in the multistate design (green). Design test cases taken from
[Hallen and Donald, 2015]. * denotes enumeration of the top 5 sequences. Missing discrete calculations
mean that discrete search was unable to find a non-clashing conformation for the wild-type protein, or that
5 sequences satisfying the design constraints were not available in the discrete search space.

9

Table S1: Single-state protein design test cases. Each design was run with continuous sidechain
flexibility, and some also included continuous backbone flexibility. Designs were performed with and without
LUTE, using EPIC [Hallen et al., 2015] in both cases. Designs not finishing without LUTE (after three
weeks of computation time) are marked DNF. nL and nn denote the number of nodes in the A* tree after
enumeration of the GMEC (or of the last conformation if several conformations closely spaced in energy
were calculated; see [Hallen et al., 2015]), with and without LUTE respectively. The residual of the pairwise
LUTE least-squares fit is denoted rp. The final least-squares fit residual is denoted rf . rf = rp for designs
with rp < 0.01, but otherwise we computed a LUTE matrix with sparse triples and report the residual from
the triples fit as rf . These residuals are reported for the second iteration of iMinDEE, if two iterations were
required (iMinDEE always finishes after at most two iterations) [Gainza et al., 2012]. The residual from
the first round of iMinDEE is typically much lower because of the greater amount of pruning in the first
iteration. Table continues on next page.
Protein name PDB

code
Residue
count

Backbone
flexibility

nL nn rp rf

Scorpion toxin 1aho 7 Y 42 751 0.0008 0.0008
Scorpion toxin 1aho 9 Y 49 402 0.002 0.002
Scorpion toxin 1aho 12 Y 46182 2149464 1.03 0.18
Cytochrome c553 1c75 6 Y 3 893 0.0004 0.0004
Atx1 metal-
lochaperone

1cc8 7 Y 141 10816 0.05 0.006

Bucandin 1f94 7 Y 0 167 0.003 0.003
Nonspecific lipid-
transfer protein

1fk5 6 Y 0 32 3⇥10�5 3⇥10�5

Transcription fac-
tor IIF

1i27 7 Y 137 28148 0.07 0.02

Ferredoxin 1iqz 9 Y 21 1550 0.007 0.007
Trp repressor 1jhg 7 Y 221 26079 0.06 0.01
Fructose-6-
phosphate al-
dolase

1l6w 6 Y 0 132 0.0002 0.0002

PA-I lectin 1l7l 6 Y 0 35 5⇥10�10 5⇥10�10

Phosphoserine
phosphatase

1l7m 7 Y 0 445 0.001 0.001

alpha-D-
glucuronidase

1l8n 5 Y 0 1 7⇥10�23 7⇥10�23

Granulysin 1l9l 7 Y 0 29 0.0006 0.0006
Ferritin 1lb3 5 Y 0 155 0.0006 0.0006
Cytochrome c 1m1q 8 Y 0 1197 0.0004 0.0004
Hypothetical pro-
tein YciI

1mwq 8 Y 0 274 0.003 0.003

Ponsin 2o9s 14 N 205873 162750 4.52 1.93
Scytovirin 2qsk 10 N 0 10 1⇥10�11 1⇥10�11

10

Putative

monooxygenase

2ril 8 N 71 8125 0.0002 0.0002

dpy-30-like pro-

tein

3g36 4 N 0 35 0.0008 0.0008

HIV gp120 3u7y 16 N 125 48935 3⇥10�5 3⇥10�5

Atx1 metal-

lochaperone

1cc8 20 N 35670 DNF 0.10 0.003

Atx1 metal-

lochaperone

1cc8 20 N 2 592642 0.006 0.006

Atx1 metal-

lochaperone

1cc8 30 N 77 DNF 0.32 0.01

Atx1 metal-

lochaperone

1cc8 40 N 38201 DNF 1.70 0.30

Scorpion toxin 1aho 17 N 198857 DNF 0.80 0.04

11

Table S2: Multistate protein design test cases. These designs systems were taken from
[Hallen and Donald, 2015] and were run using the comets multistate design algorithm. Each design was run
both with continuous flexibility, using LUTE, and without continuous flexibility. Type is “a↵” for designs for
a�nity, “stab” for designs for stability robust to force field choice, and “multi” for designs to be multispecific
to two di↵erent complexes (the types of designs, and the comets algorithm in general, are described further
in [Hallen and Donald, 2015]). In each design, N is the number of sequences in the search space and k is
the number of sequences enumerated (we enumerate either the top sequence or the top 5). mL and md are
the numbers of sequences explicitly considered using LUTE and in discrete search respectively. Similarly, gL
and gd are the numbers of full conformational optimizations performed using LUTE and in discrete search
respectively. “WC” indicates that the wild-type protein was found to have a clash unavoidable by discrete
conformational search, and “NF” indicates that the discrete search provably cannot find five sequences that
satisfy the design constraints. Table continues on next page.
Protein re-
designed

Mutable
residues

PDB id(s) Type N k mL md gL gd

CED-4 1, 5, 227, 229,
259, 265, 279,
282

2a5y/3lqr multi 288 1 28 17 4 4

Rab-11A 44, 46, 47, 48,
50

2gzd/2gzh multi 2744 1 269 106 4 4

Poly-
adenylate-
binding
protein 1

564, 571, 580,
582, 584

3ktp/3ktr multi 448 1 51 35 4 4

CDO 867, 872, 874,
901, 918

3n1f/3n1q multi 112 1 10 WC 4 WC

Brother of
CDO

753, 756, 758,
760, 789, 804

3n1g/3n1m multi 224 1 35 WC 4 WC

Rab-11A 44, 46, 47, 48,
50

2gzd/2gzh multi 2744 5 277 NF 20 NF

Poly-
adenylate-
binding
protein 1

564, 571, 580,
582, 584

3ktp/3ktr multi 448 5 71 83 20 20

Beta-2-
micro-
globulin

52, 54, 56, 57,
63

1nez a↵ 5488 1 321 WC 2 WC

Papain 18, 19, 21, 159,
177, 181

1stf a↵ 9408 1 350 1349 2 2

PAF-
acetyl-
hydrolase

194, 212, 235,
236, 238, 254,
316

1vyh a↵ 192 1 23 17 2 2

Leupeptin
inhibitor

356, 357 2nqa a↵ 361 1 36 36 2 2

12

Scytovirin 1, 6, 10, 13, 28,

43, 48, 58, 61,

76

2qsk stab 896 1 15 15 2 2

Putative

monooxy-

genase

5, 13, 21, 55,

57, 59, 61, 70

2ril stab 9604 1 27 27 2 2

dpy-30-like

protein

64, 68, 87, 91 3g36 stab 196 1 15 15 2 2

Beta-2-

micro-

globulin

52, 54, 56, 57,

63

1nez a↵ 5488 5 362 NF 10 NF

Papain 18, 19, 21, 159,

177, 181

1stf a↵ 9408 5 346 1441 10 10

Leupeptin

inhibitor

356, 357 2nqa a↵ 361 5 50 50 10 10

13

