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Appendix
The following is an appendix which provides additional information to substantiate the claims of the paper.15

Appendix 1 describes details of the high-resolution protein backbonecomputation from residual dipolar coupling data.
In Appendix 2, we state Chernoff bounds.Appendices 3 and 4 describe the pseudocode for the Hausdorff-based
similarity measure and the NOE assignment algorithmHANA , respectively.Appendix 5 provides a detailed proof our
main theorem (Theorem 5.1 in our paper15). Finally, inAppendix 6 we present an analysis of the running time ofHANA .

1. Details of Protein Backbone Structure Determination from Residual Dipolar
Couplings

RDC-EXACT refers to the first polynomial-timede novoalgorithm (in fact, linear-time in the number of residues ofa
protein) for high-resolution protein backbone structure determination developed in Refs. 13 and 11. It takes as input (a)
two RDCs per residue (e.g., assigned NH RDCs in two media or NHand CH RDCs in a single medium), (b) delimited
α-helices andβ-sheets with known hydrogen bond information between paired strands, and a few unambiguous NOEs
(used to pack the helices and strands).RDC-EXACT differs from previous approaches for computing backbone confor-
mation in native state from experimental data in (a) the number of restraints used, (b) how backbone dihedral angles are
computed, and (c) how the conformational space is searched.RDC-EXACT does not randomly search the entire confor-
mation space to find solutions consistent with the RDC data. Rather, it formulates the problem such that the structures
computed areexact solutionsof a system of quartic monomial equations derived from the RDC equation

r = Dmaxv
T
Sv, (1)
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wherer is the experimentally observed RDC,Dmax is the dipolar interaction constant,S is the3×3 Saupe order matrix,6

or alignment tensorthat specifies the ensemble-averaged anisotropic orientation of the protein in the laboratory frame,
andv represents the internuclear bond vector. LettingDmax = 1 for simplicity of exposition, and considering a global
coordinate frame that diagonalizes the alignment tensorS (such a coordinate frame is calledprincipal order frame
(POF)), Equation (1) can be rewritten as

r = Sxxx2 + Syyy2 + Szzz
2, (2)

whereSxx, Syy andSzz are the three diagonal elements ofS, andx, y andz are, respectively, thex, y andz components
of the unit vectorv in a POF which diagonalizesS, which is a 3× 3 symmetric, traceless matrix with five independent
elements.9, 10 Given NH RDCs in two aligning media (or NH and CH RDCs in singlemedium), the associated NH
vectorv must lie on the intersection of two conic curves.8, 14 We state the following two propositions without proof
(detailed proofs an be found in Refs. 11 and 13), which form the corner-stone of the exact-solution based polynomial
time algorithm for backbone computation.

Proposition 1.1. (Ref. 11). Given the diagonal Saupe elementsSxx andSyy for medium 1,S′
xx andS′

yy for medium 2
and a relative rotation matrixR between the POFs of medium 1 and 2, the square of thex-component of the unit vector
v satisfies a monomial quartic equation.

Proposition 1.2. (Ref. 11). Given the NH unit vectorsvi andvi+1 of residuesi and i + 1 and the
−−→
NCα vector of

residuei the sines and cosines of the intervening backbone dihedral angles(φ, ψ) satisfy the trigonometric equations
sin (φ + g

1
) = h

1
and sin (ψ + g

2
) = h

2
, whereg1 andh1 are constants depending onvi andvi+1, andg2 andh2

depend onvi, vi+1, sinφ andcos φ. Furthermore, exact solutions forsin φ, cos φ, sin ψ, andcos φ can be computed
from a quadratic equation by tangent half-angle substitution.

RDC-EXACT reduces the problem of searching the conformational space to finding the roots of a system of low-
degree (quartic) monomial equations, which are discrete, finite and algebraic. A depth-first systematic search over all
possible conformations (solutions) that employs a provable pruning strategy (which guarantees pruned conformations
need not be considered further) based on a real solution filter and a Ramachandran Filter is used to output the confor-
mations of a given secondary structure element that agrees the best with both the experimental RDCs and the geometry
of the corresponding secondary structure type.

Given a set of computed secondary structure elements, the backbone fold is computed by computing the relative
translations between these oriented secondary structure elements. This is done by using a sparse set of NOE distance
restraints. At least three NOEs are needed to pack a pair of secondary structure elements, and to resolve the 4-fold
orientational degeneracy in the relative pose between the secondary structure elements arising due to the symmetry of
the dipolar operator (when RDCs are measured in one medium).

A loop connects two consecutive secondary structure elements. Unlike secondary structure elements, the geometry
of a loop does not follow any specific pattern, and can be less ordered. Given the orientation of the end peptide plane of
one and the beginning peptide plane of another secondary structure element, the loop computation (a.k.a.,loop closure)
problem involves computing an ensemble of loops that fit the missing portion of the backbone chain without violating
the backbone geometry, and simultaneously satisfying the experimental data recorded for the loop. The loop closure
problem is an instance of an inverse-kinematics problem, which can be solved exactly to enumerate all solutions (16
of them at most) for 3 residue-long loops, i.e., for 6 degreesof freedom (DOF) in the absence of experimental data.
For loops with more than 3 residues (i.e., with more than 6 DOFs) this problem is underconstrained, thus a continuous
family of solutions are possible in the absence of additional constraints. RDCs provide algebraic restraints on the global
orientation of many bond vectors in the loops. Whenever two RDCs per residue are available for each residue in a loop,
we useRDC-EXACT with real solution and steric filters to compute the loops.13 In case of missing RDC data for the
loops, we used an enhanced version of robotics-based cycliccoordinate descent (CCD) algorithm3, 7 in conjunction with
a steric filter to compute loops that also minimize the deviation between the experimental RDCs and the back-computed



3

RDCs (measured on the respective bond vectors in each residue), and without any steric clash with the remainder of the
protein structure.

2. Chernoff Tail Bounds

The Chernoff bound provides a bound for the success of majority agreement for a sequence of independent events. The
following lemma (Lemma 2.1) gives common formats of the Chernoff bound that determines the bound on the number
of trials in order to obtain the majority agreement up to a specified probability.

Lemma 2.1. (Chernoff Tail Bounds5, 1): Let X1, · · ·,Xn be a sequence of independent Poisson trials such that
Pr(Xi) = pi, where0 < pi < 1 and 1 ≤ i ≤ n. Suppose thatX =

∑n
i=1 Xi and µ = E(X) =

∑n
i=1 pi.

Then for anyε > 0, we have

Pr
(

X ≤ (1 − ε)µ
)

≤ exp(−µε2/2), for any0 < ε < 1; (3)

Pr
(

X ≥ (1 + ε)µ
)

≤ exp(−µε2/(2 + ε)), for anyε > 0. (4)

Based on Lemma 2.1, we can easily derive the following extended lemma of tail bounds that is useful for the proof
of Theorem 5.1 (Section 5 in our paper15 andAppendix 5).

Lemma 2.2. (Extended Tail Bounds): LetX1, · · ·,Xn be a sequence of independent Poisson trials such thatPr(Xi) =

pi, where0 < pi < 1 and1 ≤ i ≤ n. Suppose thatX =
∑n

i=1 Xi andµ = E(X) =
∑n

i=1 pi. Then we have

Pr(X ≤ γ) ≤ exp
(

− (µ − γ)2

2µ

)

, for any0 < γ < µ. (5)

Pr(X ≥ γ) ≤ exp
(

− (µ − γ)2

µ + γ

)

, for anyγ > µ; (6)

3. Pseudo Code for Computing the Similarity Score for an NOE Pattern

Let B be the back-computed NOE pattern, and letY be the experimental NOESY spectrum. Letδj be the error
tolerance in the NOESY spectrum in thejth dimension, and letσj be the uncertainty of the NOE peak position in the
jth dimension, wherej = 1, 2, 3. Let (ω(a1), ω(a2), ω(a3)) ∈ B be the back-computed NOE peak for an expected
NOE

(

(a1), (a2), (a3)
)

. The pseudocode for calculating the similarity score between the back-computed NOE patternB

and the experimental NOESY spectrumY is given in Algorithm 3.1. For each rotamer, the computationof its similarity
score based on the Hausdorff distance using Algorithm 3.1 takesO(mw) time, wherem is the number of back-computed
NOE peaks, andw is the total number of cross peaks in the experimental NOESY spectrum.

4. Pseudo Code for NOE Assignment Algorithm HANA

Figure 1 shows the flow chart of our NOESY data interpretationapproach for the structure determination. The NOE
assignment process is divided into three phases: initial NOE assignment (phase 1), rotamer selection (phase 2) and fil-
tration of ambiguous NOE assignments (phase 3). In the initial NOE assignment phase, all possible pairs of ambiguous
NOEs are assigned to a NOESY cross peak if the resonances of corresponding atoms fall within a tolerance window
around the NOE peak. In the rotamer selection phase, an extended model of the Hausdorff distance (Section 4.3) is
used to measure the match between the back-computed NOE pattern and the experimental spectrum, and thus choose
the ensemble of best rotamers with top match scores. Here ourrotamer selection is different from that in Ref. 12:
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Algorithm 3.1 Similarity Score Calculation Based on the Hausdorff Distance
FunctionHausdorff Score (B, Y ) /* B is the back-computed NOE pattern, andY is the NOESY spectrum. */
1: x0, xmax, x, s, θ ← 0;
2: m ← |B|; /* m is the number of back-computed NOE peaks. */
3: for each(ω(a1), ω(a2), ω(a3)) ∈ B do
4: for each(p1, p2, p3) ∈ Y do
5: if |p1 − ω(a1)| < δ1 and |p2 − ω(a2)| < δ2 and |p3 − ω(a3)| < δ3 then
6: /* δj is the error tolerance in the NOESY spectrum in thejth dimension,j = 1, 2, 3. */
7: x0 ←

∏

3

j=1
N

(

|ω(aj) − pj |, σj

)

;
8: /* N (|x − µ|, σ) is the probability of observing the difference|x − µ| with meanµ and deviationσ. */
9: if x0 > xmax then
10: xmax ← x0;
11: end if
12: end if
13: end for
14: x ← x + xmax;
15: end for
16: s ← x/m;
17: ρ ←

√

2mp(1 − p) ; /* p is the probability for a back-computed NOE peak to randomly match an experimental peak. */
18: θ ← 1

2

(

Φ((1 − p)mρ−1) − Φ((s − p)mρ−1)
)

; /* probability of a false random match. */
19: return (1 − θ)x/m;

rotamers in Ref. 12 were chosen statistically from a high-resolution protein structure database, while our rotamer se-
lections are driven directly from the pattern match score between back-computed and experimental NOE peaks. In the
last phase, ambiguous NOE assignments are filtered based on the structure obtained by combining the high-resolution
backbone (Section 4.2) and the ensemble of chosen rotamers.The final NOE assignments are fed into standard structure
determination programs, such asXPLOR/CNS2 or CYANA4 for the structure calculation.

The following notations will be used in the description of our NOE assignment algorithmHANA (Algorithm 4.1).
Let Y = {p1, . . . , pw} denote the set of experimental NOESY peaks, wherew is the total number of NOESY peaks.
Let Ai denote the set of atom triples that are assigned to peakpi. Let A = {a1, . . . , aq} denote the set of all atoms
(including all protons) in the protein, whereq is the total number of atoms. LetL = {ω(a1), . . . , ω(aq)} denote the set
of chemical shifts for all atoms, whereω(ai) is the chemical shift of atomai. Let δj denote the error tolerance in thejth
dimension for the initial NOE ambiguous assignment, wherej = 1, 2, 3. Let n be the number of residues in the protein,
and lett be the maximum number of rotamer in a residue. Letrij denote the rotamerj at residuei, wherei = 1, . . . , n,
j = 1, . . . , t. Letu denote the NOE upper-limit distance bound. LetP denote the structure after combining the ensemble
of chosen rotamers with the backbone computed fromRDC-EXACT, and letd(‖ a1 − a2 ‖,P) denote the minimum
Euclidean distance between atomsa1 anda2 over all pairs of chosen rotamers in the three-dimensional structureP.
Let Bij = {b1, . . . , bm} denote the set of back-computed NOE peaks for rotamerrij, wherem is the total number
of back-computed NOE peaks, andbi = (ω(a1), ω(a2), ω(a3)) denote the back-computed NOE peak for an expected
NOE (a1, a2, a3) from rotamerrij. Let sij denote the similarity score of rotamerrij based on the extended Hausdorff
measure. LetRi denote the ensemble of topk rotamers chosen at residuei.

The details ofHANA are as follows (Algorithm 4.1). In Phase 1 (namely initial NOE assignment), for each cross
peak(p1, p2, p3) in the NOESY spectrum, we search the resonance list and assign triple(s) of atoms(a1, a2, a3) to
(p1, p2, p3) such thatp1 − δ1 ≤ ω(a1) ≤ p1 + δ1, p2 − δ2 ≤ ω(a2) ≤ p2 + δ2, andp3 − δ3 ≤ ω(a3) ≤ p3 + δ3.
In the rotamer selection phase, we first place all rotamersrij into backbone by rotation and translation computed based
on the coordinates of HN , Cα and N atoms. Then for each protona3 in rotamerrij, we search the backbone structure
and find all backbone protonsa1 that are within the NOE upper-bound limit from protona3 (an extra 2.5Å is added as
the correction of the upper-bound for every methyl group). Next for each expected NOE(a1, a2, a3), we back compute
its expected NOE peak(ω(a1), ω(a2), ω(a3)) based on the mapping between each atom namea and corresponding
chemical shiftω(a) in the resonance list. LetBij = {(ω(a1), ω(a2), ω(a3))} denote the set of all back-computed
NOE peaks for rotamerrij. We next call the functionHausdorff Score to compute the match score between the NOE
patternBij of rotamerrij and the experimental NOESY spectrumY . Finally we pick the topk rotamers with highest
similarity scores at each residuei. In Phase 3 (namely filtration of ambiguous NOE assignment),we first place the top
k rotamers (selected in the second phase) at each residue intobackbone, and then obtain a protein structureP. Note
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Input data

Fig. 1. Flow chart of our NOESY interpretation approach for the structure determination.

that each sidechain atom in structureP hask possible positions from the topk chosen rotamers. Next, for each initial
NOE assignment(a1, a2, a3) obtained in the first phase, we measure the Euclidean distance between protonsa1 anda3

in structureP. Recall thatd(‖ a1 − a2 ‖,P) stands for the minimum Euclidean distance between atomsa1 anda2 over
all pairs of chosen rotamers in structureP. In HANA , an NOE assignment(a1, a2, a3) (from the initial NOE assignment
in Phase 1) is pruned, ifd(‖ a1 − a2 ‖,P) is larger than the NOE upper-bound limit.

5. Proof of Theorem 5.1

In this section, we give the details of the proof for Theorem 5.1. We first restate the theorem and then provide the proof.

Theorem 5.1. Suppose thatmfµt−mtµf ≥ max(mf ,
√

mfmt)·4
√

µt lnmt. Then with probability at least1−m−1
t ,

our algorithm chooses the true rotamerrt rather than the false rotamerrf .

Proof: Let X,Y be random variables as defined in Lemma 5.1 in Ref. 15. Based onour algorithm, the true rotamer
rt is chosen if and only if the similarity score of the true rotamer rt is larger than that of the false rotamerrf , that is,
X
mt

> Y
mf

. Thus, our goal is to provePr( X
mt

> Y
mf

) ≥ 1 − m−1
t . We first calculate the upper bound ofPr( X

mt
≤ Y

mf
),

the probability that the false rotamerrf is chosen. Since event{ X
mt

≤ Y
mf

} is equivalent to the union of{X ≤
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Algorithm 4.1 Hausdorff-based NOE Assignment (HANA)
GivenL, Y , backbone, rotamer library. /*L is the assigned resonance list, andY is the experimental NOESY spectrum. */
Phase 1 (Initial NOE Assignment):
1: for i ← 1 to w do /* w is the number of experimental peaks in the NOESY spectrum. */
2: Ai ← ∅; /* Initialization of NOE assignment for each NOESY peak. */
3: end for
4: for i ← 1 to w do
5: for j ← 1 to q do /* q is the number of protons in the protein. */
6: a′

j ← heavy atom bond-connected toaj ;
7: for k ← 1 to q do
8: if |pi1 − ω(aj)| < δ1 and |pi2 − ω(a′

j)| < δ2 and |pi3 − ω(ak)| < δ3 then
9: Ai ← Ai ∪ {(aj , a′

j , ak)};
10: end if
11: end for
12: end for
13: end for
Phase 2 (Rotamer Selection):
1: for i ← 1 to n do /* n is the number of residues in the protein. */
2: Ri ← ∅; /* Initialization for the set of chosen rotamers at residuei. */
3: for j ← 1 to t do /* t is the maximum number of rotamers per residue. */
4: Bij ← ∅; /* Initialization for the back-computed NOE pattern for rotamerj at residuei. */
5: sij ← 0; /* Initialization for the similarity score of the back-computed NOE patternBij . */
6: end for
7: end for
8: for i ← 1 to n do
9: for j ← 1 to t do
10: structureP ← rotate and translate rotamerrij into backbone;
11: for each protona3 ∈ rij do /* rij is the rotamerj at residuei. */
12: for each protona1 ∈ backbonedo
13: a2 ← heavy atom bond-connected toa1;
14: if d(‖ a1 − a3 ‖,P) < u then
15: /*d(‖ a1 − a3 ‖,P) is the Euclidean dist. betw. protonsa1 anda3 in P, andu is the NOE upper-bound. */
16: Bij ← Bij ∪ {(ω(a1), (ω(a2), (ω(a3))}
17: end if
18: end for
19: end for
20: sij ← Hausdorff Score(Bij , Y ); /* Compute the similarity score betweenBij andY (see Algorithm 3.1). */
21: end for
22: sort all rotamers{rij|j = 1, . . . , t} in descending order of scoressij ;
23: Ri ← topk rotamers in{rij|j = 1, . . . , t};
24: end for
Phase 3 (Filtration of Ambiguous NOE Assignment):
1: for i ← 1 to n do
2: for each rotamerr∈ Ri do /* Ri is the set of chosen rotamers from Phase 2. */
3: structureP ← rotate and translater into backbone
4: end for
5: end for
6: for i ← 1 to w do
7: for each(a1, a2, a3) ∈ Ai do /* Ai is the set of initial NOE assignments from Phase 1. */
8: if d(‖ a1 − a3 ‖,P) > u then
9: Ai = Ai \ {(a1, a2, a3)}
10: end if
11: end for
12: end for
13: return A1 ∪ . . . ∪ Aw

i}∧{Y ≥ mf

mt
i} for all 1 ≤ i ≤ mt, that is,{ X

mt
≤ Y

mf
} =

⋃mt

i=1{X ≤ i}∧{Y ≥ mf

mt
i}. Thus, we have

Pr(
X

mt
≤ Y

mf
) =

mt
∑

i=1

(

Pr(X ≤ i) · Pr(Y ≥ mf

mt
· i)

)

. (7)

Let γ =
mtµf+mf µt

2mf
. For any1 ≤ i ≤ γ, we have

Pr(X ≤ i) · Pr(Y ≥ mf

mt
· i)

≤ Pr(X ≤ i) (sincePr(Y ≥ mf

mt
· i) ≤ 1)

≤ Pr(X ≤ γ). (sincei ≤ γ)

Sincemfµt − mtµf ≥ max(mf ,
√

mfmt) · 4
√

ut lnmt > 0, we havemfµt > mtµf . Thus, we obtain0 < γ =
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mf µt+mtµf

2mf
< µt. By Equation (5) from the Chernoff tail bounds (Details of the tail bounds are provided in the optional

Appendix 2), we have

Pr(X ≤ γ) = Pr(X ≤ mfµt + mtµf

2mf
)

≤ exp
(

−
(µt − mf µt+mtµf

2mf
)2

2µt

)

= exp
(

− (mfµt − mtµf )2

8m2
fµt

)

.

Sincemfµt − mtµf ≥ 4mf

√
µt lnmt, we have

Pr(X ≤ γ) ≤ exp(−
16m2

fµt lnmt

8m2
fµt

)

= exp(−2 ln mt)

Thus, we have

Pr(X ≤ γ) ≤ 1

m2
t

(8)

For anyγ < i ≤ mt, we have

Pr(X ≤ i) · Pr(Y ≥ mf

mt
· i)

≤ Pr(Y ≥ mf

mt
· i) (sincePr(X ≤ i) ≤ 1)

≤ Pr(Y ≥ mf

mt
· γ). (sinceγ < i)

Sincemfµt > mtµf , we have

mf

mt
· γ =

mf

mt
· mtµf + mfµt

2mf

=
mtµf + mfµt

2mt

>
mtµf + mtµf

2mt
= µf

Then by Equation (6) from the Chernoff tail bounds (Appendix 2), we have

Pr(Y ≥ mf

mt
· γ) = Pr(Y ≥ mfµt + mtµf

2mt
)

≤ exp
(

−
(µf − mf µt+mtµf

2mt
)2

µf +
mf µt+mtµf

2mt

)

= exp
(

− (mfµt − mtµf )2

2mt(mfµt + 3mtµf )

)

.

Sincemfµt−mtµf > 0, we have2mt(mfµt+3mtµf ) < 2mt(mfµt+3mfµt) = 8mfmtµt. From the condition
mfµt − mtµf > 4

√
mtmf ·

√
µt lnmt, we have

Pr(Y ≥ mf

mt
· γ) ≤ exp(−16mtmfµt lnmt

8mfmtµt
)

= exp(−2 ln mt)

Thus, we have



8

Pr(Y ≥ mf

mt
· γ) ≤ 1

m2
t

. (9)

By equations (8) and (9), we obtainPr(X ≤ i) · Pr(Y ≥ mf

mt
· i) ≤ 1

m2

t

for any1 ≤ i ≤ mt. Thus, we have

Pr(
X

mt
≤ Y

mf
) =

m
∑

i=1

Pr(X ≤ i) · Pr(Y ≥ mf

mt
· i)

≤
mt
∑

i=1

1

m2
t

=
1

mt
.

Therefore,Pr( X
mt

> Y
mf

) ≥ 1 − m−1
t .

6. Time Complexity Analysis

We will analyze the time complexity of our NOE assignment algorithm HANA (Algorithm 4.1). We first restate Theo-
rem 5.3 and then provide the proof.

Theorem 5.3. HANA runs inO(tn3 + tn log t) time, wheret is the maximum number of rotamers at a residue andn is
the total number of residues in the protein sequence.

Proof: To analyze the algorithmic complexity of our NOE assignmentalgorithm, we first recall some notations defined
previously. Letn be the number of residues in the protein sequence, and letw denote the total number of cross peaks
in the experimental NOESY data. Lett denote the maximum number of rotamers for every amino acid inthe rotamer
library. Letξ denote the maximum number of atoms per residue. Letq be the total number of atoms in the protein, then
q = O(ξn).

The running time of the initial NOE assignment phase is bounded byO(wq2) steps. In Phase 2, the initialization
in lines 1−7 takesO(tn) time. Since the number of protons in the backbone is bounded by O(n), the total number
of protons in a rotamer is less thanξ, the loop in lines 11−19 needsO(ξn) steps. The functionHausdorff Score
takesO(mw) time to compute the similarity score between the back-computed NOE patternBij and the experimental
NOESY spectrumY , wherem is the number of back-computed NOE peaks inBij . Hence, the loop in lines 9−21 runs
in O

(

t(nξ + mw)
)

time. Sorting all rotamers and selecting topk rotamers in lines 22−23 only requiresO(t log t) time.
Thus, the overall running time for Phase 2 isO(tn)+n ·O

(

t(mw+ξn)
)

+n ·O(t log t) = O
(

tn(mw+ξn)+ tn log t
)

.
In Phase 3 (namely the filtration of ambiguous NOE assignment), placing all rotamers into the backbone (in lines 1−5)
takesO(kn) time. In worst case,|Ai| is bounded byO(q2), whereq is the total number of atoms in the proteins. Hence
the total running time for lines 6−12 is O(wq2). Thus, Phase 3 runs inO(kn + wq2) time. Therefore, the overall
running time forHANA is O(wq2)+O

(

tn(mw+ξn)+ tn log t
)

+O(kn+wq2) = O
(

wq2 + tn(mw+ξn)+ tn log t
)

.
In general, it is safe to assume the number of atoms in a residue is a constant, that is,ξ = O(1). Thus,q = O(ξn) =

O(n). Also, since each proton can only have NOE interactions witha constant number of other protons within 6.0Å
distance, we havew = O(n) andm = O(n). Therefore, the running time ofHANA is O(tn3 + tn log t) in the worst
case.
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