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Chapter 2 

Elimination Methods: an Introduction 
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Yagiti N. Lakshman t 

Department of Computer and Information Sciences 
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This is~ introductory paper on elimination methods applicable to a system of nonlinear 
polyno,~als equations. We discuss three different approaches for solving a system of 
nonliii:~ polynomial equations. The first approach of resultants is based on the theory 
of det~~nants, and was developed in the late 19th century and the early 20th century. 
The main idea is to generate from a system of nonlinear polynomial equations, a possibly 
larger system of independent polynomial equations such that there are as many equations 
as terms in the polynomials so that each term can be used as an unknown and the theory 
of linear system of equations can be applied. We describe the resultants of Sylvester, 
Bezout, Dixon's extension of Bezout's resultant, and Macaulay's resultant, followed by 
some recent extensions of Macaulay's resultant. 

The second approach is based on polynomial ideal theory and generates special bases 
of polynomial ideals, called Grobner bases. An algorithm for computing such bases was 
given by Buchberger and is described here. We review some recent developments in the 
Grobner basis theory, by the use of which, nonlinear polynomial equations with finitely 
many solutions can be efficiently solved. 

The third approach is based on Ritt's characteristic set construction, motivated by 
the analysis and decomposition of the zero sets of systems of polynomial equations. This 
approach has been recently popularized by Wu Wen-tsun who has impressively demon
strated its application to automated geometry theorem proving. Using Wu's method, it 
is possible to automatically prove, in a matter of seconds, nontrivial theorems in plane 
Euclidean geometry which human experts find difficult to prove. 
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0361. . 
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Polytechnic Institute under a grant (Grant No. 90-39) from the New York State Science and Technology 
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1. Introduction 

In high school, we learn how to manipulate and solve a system of linear equations. In 
particular, we learn methods for determining whether a system of linear equations has 
a solution or not. With a little more effort, it is also possible to determine whether a 
system of equations has a single solution or infinitely many solutions. In the latter case, 
it is possible to study the structure of the solution space by classifying the variables into 
independent and dependent subsets and specifying the solutions in terms of independent 
variables. 

A related problem of determining whether an equation c (or a system of equations) 
follows from a system S of equations can also be answered easily depending upon the 
number of solutions of S. If S has no solution, i.e. S is inconsistent, then it is possible 
to take either of the two views - any equation follows from an inconsistent system of 
equations that has no solution, or alternatively, it is meaningless to ask whether an 
equation follows from an inconsistent set of equations. If S has a unique solution, then 
if the solution' of S is also a solution of c, then c follows from S. If S has infinitely 
many solutions, which can be represented by expressing each dependent variable in terms 
of the independent variables, the expression for each of the dependent variables can 
be substituted into the given equation c to check whether the equation holds. This is 
equivalent to checking whether the solution space of the given equati~n c includes the 
solution space of the system S of equations. 

The above problems can also be studied in a slightly different setting using their 
formulation in terms of properties of matrices and determinants. That i~\:Wh~t one often 
learns in a first course on linear algebra at a college level. What has beenf:rriissing, of late, 
is a similar discussion for studying these problems for nonlinear polynomial equations. 
That is the case even though elegant generalizations were developed for solving these 
problems for nonlinear polynomial equations in the late 19th century and early 20th 
century. A number of books on the theory of equations were written which are now out 
of print. For an excellent discussion of the history of constructive methods in algebra, 
the reader is referred to a thought-provoking article by Professor Abhyankar (Abhyankar, 
1976). 

In this paper, we discuss these problems for nonlinear equations and discuss some of 
the approaches proposed in the late 19th century and early 20th century. We also discuss 
two additional constructive approaches - the approach proposed by Ritt and recently 
revived by Wu based on algebraic geometry, and another approach by Buchberger based 
on polynomial ideal theory. 

We study two additional subproblems that turn out to be useful in their own right 
as well as intermediate steps. while discussing the problems mentioned earlier. The first 
problem has to do with the equivalence of two systems of equations. The second problem 
is that of projection or elimination, which is to project the solution space of a system S 
of equations along certain dimensions and compute another system S' of equations in an 
appropriate subset of the variables, such that the solution space of S' coincides with the 
projection of the solution space of S on the chosen variables. 

To summarize, here is a list of problems being considered. Given a system S of poly
nomial equations in n variables, 
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• does Shave a solution? 
• if S has a solution, what is the structure of the solution space? What is a good 

characterization of the structure of the solutions of S? 
• eliminate m variables from S to obtain a system of equations S' in the remaining 

n - m variables such that the solutions of S' are the projections of the solutions of 
S to the coordinates corresponding to these n - m variables. 

• Given two systems of polynomial equations· S and S', do they have the same solu
tions, or, is the set of solutions of S' properly contained in the set of solutions of 
S? 

1.1. OVERVIEW 

We begin with the basic definitions of zero sets of polynomial systems and ideals. This 
is followed by an exposition on resultants. We discuss Dixon's formulation of the resultant 
of two polynomials in one variable as well as three polynomials in two variables, followed 
by a presentation of Macaulay's construction of the multivariate multi-polynomial resul
tant. The concept of the u-resultant for determining the common zeros of polynomials is 
discussed. 

Section 3 is about Grobner bases. The concepts of an ordering on power products 
and viewing polynomial equations as simplification rules are discussed. A Grobner basis 
of an ideal is·,'a basis with many useful properties. Among other things, Grobner bases 
can be used.: to solve systems of equations. After an overview of the basic properties of 
Grobner ba8~'s, we pay special attention to systems of polynomials that have finitely 
many common solutions. For computing the common zeros of such systems, we describe 
a recent algorithm due to Faugere et al. (1989). 

Section 4 discusses Ritt's characteristic sets. Our presentation is based on Wu's treat
ment of characteristic sets and an algorithm for computing a characteristic set. A breadth
first algorithm, which is Ritt's original algorithm, as well as a depth-first algorithm for 
computing characteristic sets are described. 

An expanded version of this article includes illustrations of the applications of different 
elimination techniques to curve and surface implicitization, detection of unfaithful pa
rameterizations and geometry theorem-proving. The expanded version· will be available 
as a technical report from the Department of Computer and Information Science of the 
University of Delaware or from Institute for Programming and Logics, the Department 
of Computer Science, State University of New York at Albany. 

1.2. PRELIMINARIES 

Let Q denote the field of rational numbers and C denote the field of complex num
bers. Unless specified otherwise, by a polynomial, we mean a multivariate polynomial 
with rational or integer coefficients. A univariate polynomial p( x) is an element of the 
polynomialring Q[x]. 

A multivariate can be viewed in one of two ways: as an element of the ring Q[xl, ... , xn] 
or as an element of the ring Q[x1, ... , Xn-l][xn]· Under the first view, the polynomial 
p(x1, ... , xn) is seen as a sum of products with nonzero coefficients, where each product 
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x1 d 1 x2d2 • • • Xn dn, is called a term or power product; together with its coefficient, it is 
called a monomial; the degree of a term x1 d 1 x2 d2 • • • Xn dn is d1 + d2 + · · · + dn. 

Under the second view, the polynomial p( x 1, ... , Xn) is seen as a univariate polynomial 
in Xn (also known as the main or leading variable) with coefficients that are themselves 
multivariate polynomials in the remaining variables. For example, the polynomial 

q(x1, X2, X3) = 2X~X2X~ + X~X~- 2Xl +X~+ X3 

can be viewed as a sum of monomials appearing in it, or can be viewed as the polynomial 

q(x3) = (2xix2 + x~)x~ + X3 + ( -2x1 + x~) 
in the variable x 3 (q could be also considered as a univariate polynomial with x 1 as the 
main variable or x2 as the main variable). 

The degree of a univariate polynomial p( x) is the maximum degree, say d, of x in p( x); 
the leading term of p( x) is then xd, and the leading coefficient (also called the initiaQ 
of p( x) is the coefficient of xd in p( x). For a multivariate polynomial, the leading term 
and the leading 'coefficient can be determined only after an ordering on terms is chosen. 
If a multivariate polynomial is considered as a polynomial in one of its variables, say x 3 

in the case of q above, then its degree is the maximum degree in that variable. For q, 
the degree of the polynomial is 2. Its leading term is x~ and the leading coefficient is the 
polynomial2xrx2 + x~. 

A univariate polynomial p(x) is said to vanish at x =a if the polynomial p evaluates 
to zero when a is uniformly substituted for x in p. The value of p at ajs.,denoted by 
p(a); if p(a) = 0, then a is called a zero of p(x). Equivalently, the polyntf;ffii;;tl equation 
p(x) = 0 is said to have a solution a. The domain from which the values aie pi~ked to be 
checked for zeros of p is very important. It is possible for p to have a zero in one domain 
and not in another domain. For instance, x 2 + 1 does not have a zero in the reals, but 
it does have a zero in the complex numbers. A univariate polynomial of degree n with 
complex coefficients has exactly n complex roots. They may or may not be distinct. 

The above definitions extend to multivariate polynomials also. Given p(x1, ... , Xn), 
ann-tuple (a1, a2, ... , an) E en, the affine n-space over complex numbers, is a zero of p 
if p evaluates to zero when, for each 1 :::; i :::; n, ai is uniformly substituted for Xi, i.e. 
p(a1, a2, ... , an) = 0. Equivalently, (a1, a2, ... , an) is called a solution of the multivariate 
polynomial equation p(x1, ... , Xn) = 0 if p(a1, ... , an) = 0. 

Given a system {!1 (x1, x2, ... , Xn), h(xl, x2, ... , Xn), ... , fr(Xb x2, ... , Xn)} of 
polynomials (equivalently a system {/i(x1, x2, ••• , Xn) = 0, i = 1, ... , r } of polynomial 
equations), (a1, a2, ... , an) is a common zero (respectively, a common solution) of the 
system, if, for each 1:::; i:::; r, fi(a1,a2, ... , ... an) = 0, i.e. (a1,a2, ... ,an) is a zero of 
every polynomial in the system. Then-tuple (a1, a2, ... , an) is also called a common root 
of these polynomials. Henceforth, we will abuse the terminology; by a system, we will 
mean either a set of polynomials or a set of polynomial equations, with the hope that 
the context can resolve the ambiguity. 

Given a system S of polynomials, the set 

Zero(S) = {(al, a2, ... 'an) E en I Vf E s, f(a!, a2, ... ' an)= 0} 

is called the zero set of the system S. The zero set defined by a system of polynomials 
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is also called an algebraic set. Throughout this paper, we have focused on zeros in the 
field of complex numbers (in general, an algebraically closed field). For details about zero 
sets of polynomials over the reals (these are called semi-algebraic sets), the reader may 
consult Tarski (1948), Arnon et a/. (1984), Coste and Roy (1988) and Renegar (1989). 

Example: Let f(:JJ, y) = :JJ
3

- y2 , g(:JJ, y) = 2x2 + (y- 1)2 - 2, S = {/ = 0, g = 0}, 

Zero(S) = {(1, 1), 

( -2.253012931 + 1.322062452i, 3.016885573 + 2.953686458i), 

( -2.253012931- 1.322062452i, 3.016885573- 2.953686458i), 

( -.4604205396 + .3623712296i, -.3774386961- .2422512995i), 

(-.4604205396- .3623712296i, -.3774386961 + .2422512995i), 

(.4268669419, -.2788937516)} 

(the values shown here are floating point approximations). Geometrically, Zero(S) con
sists of the coordinates of all the points of intersection of the cusp f(x, y) = 0 and the 
ellipse g(x, y) = 0. 

The zero set of a system of polynomials could be infinite. In that case, it is possible, 
as in linear algebra, to talk about the dimension of the zero set. If the zero set is finite, 
the system is called zero-dimensional. If the zero set is empty, then the system is said to 
be of dimens~pn -1. If the zero set is infinite, then the system has positive dimension. 

A zero a i>t,:a univariate polynomial p(x) is said to be of multiplicity k + 1 if p(i)(a) for 
i = 0, ... , Fil:ll evaluate to zero, where p(i) is the i-th derivative of p with respect to x. 
This is equivalent to saying that (x- a)k+ 1 divides p(:JJ). 

1.2.1. AFFINE ZEROS AND PROJECTIVE ZEROS 

The familiar complex n-space is known as the affine n-space over the complex numbers. 
It consists of all n-tuples of the complex numbers. In cartesian coordinates, each n-tuple 
(eb e2, ... 'en) E en represents a point in the affine n-space. By Zero(S), we mean the 
set of affine zeros of S. We now introduce the notion of projective space and projective 
zeros. 

The projective n-space over the complex numbers, denoted by pn, consists of all ( n + 
1)-tuples over the complex numbers except (0, 0, ... , 0). Each (n + 1)-tuple in pn is 
said to represent a point in the projective n-space. However, the tuples (a a, a1, ... , an) 
and (Aa0 , Aa1, ... , Aan) are said to represent the same point for any non-zero complex 
number A and the two (n + 1)-tuples are said to be equivalent. Thus, each point in pn 
is represented by any member of an infinite set of proportionate (equivalent) n-tuples. 
We can embed the affine n-space into the projective n-space as follows. T~ each point 
(e1, e2, ... , en) E en, we associate the (n+l)-tuple (1, e1, e2, ... , en)· As mentioned earlier, 
any other ( n + 1 )-tuple of the form (A, Ae1, ... , A en) represents the same point as long as 
A=/= 0. Any (n + 1)-tuple B = (bo, b1, b2 , ••• , bn) in which b0 =/= 0 is associated with the 
unique point in affine n-space whose coordinates are 
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Note that any other (n + 1)-tuple equivalent to B gives rise to the same point fJ in the 
affine n-space. Those (n + 1)-tuples which have b0 = 0 are said to represent points at 
infinity. The set of all points at infinity in pn is known as the hyper plane at infinity. 
To summarize what we have said so far, projective n-space consists of the affine n-space 
together with the hyper-plane at infinity. 

A polynomial f(x 0, X!, ..• , Xn) is said to be homogeneous of degree d if each term in 
f has degree d. 

Example: f(x 0, x 1, x2) = x6x1 - 2x 1 x~ + x~ is a homogeneous polynomial of degree 3. 
g(x1, x2) = xf + x2- x1x2 is not homogeneous. 

If (a0, a~, ... , an) is a zero of the homogeneous polynomial f(xo, x~, ... , xn), i.e. 

f(ao,al,···,an) = 0, 

then any other (n + 1)-tuple (.Xao, .Xa1, ... , Aan) is also a zero of f(xo, Xt, ... , xn)· 

Given a non-homogeneous polynomial f(xl, x2, ... , Xn), of degree d, it can be homog
enized as follows. Consider 

h f(xo, Xt, x2, ... , Xn) = xgf(xtfxo, x2/xo, ... Xnfxo) 

where x0 is a new variable. h f(xo, x~, ... , xn) is a homogeneous polynomial of degree d 
such that 

h f(1, Xt, X2, ••• , Xn) = f(xl, X2, ... xn)· 

Let (at, a2, ... , an) E en be a zero off, i.e. f(al, a2, ... an) = 0. Then (1, ti:i,)~#2; ... , an) E 
pn (or any (n+1)-tuple equivalent to it) is a zero ofh f. Conversely, if (a0, a,.i;a2'; ... , an) E 
pn is a zero of h f, and ao f- 0, then (atfao, a2/ao, ... , anfao) E en is' a zero of f. If 
a0 = 0, then there is no corresponding point in the affine space that is a zero of f. Such 
zeros of h f are called zeros at infinity of f. 

Most of the resultant calculations work over projective space with homogeneous poly
nomials. 

1.2.2. IDEALS 

Consider a commutative ring n. Let A~ n. A is called an ideal inn iff: 

• for all f, g E A, f + g E A, and, 
• for all f E A, gf E A for any gEn. 

Let /1, /2, ... , fr E n. Consider an ideal :J that contains all of /1, ... , fr. By the above 
definition, the element 

f = g1/1 + g2/2 + · · · + grfr E :J 

for any gl,g2,···,gr E'/J. Indeed, the set 
r 

T = {L g;Ji 1 gi En} 
i=l 
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is an ideal in n and it is the smallest ideal in n containing the set {/1, 12, ... Jr}. 
I is called the ideal generated by /1, !2, ... , fr and denoted by (/1, !2, ... , fr). The set 
{/1, !2, ... , fr} is called a generating set or a basis for the ideal I. 

Examples: 

1. n = ring of integers, A= set of all multiples of 3. 
2. n =ring of integers, and A= the set of integers of the form 9a + 30b, where a, bare 

integers. 
3. n = Q[x, y], and A is the set of all polynomials f(x, y) E Q[x, y] such that f(a, b)= 0 

for some fixed constants a, b E Q. 
4. n = Q[xb X2, ... , Xn] and A= (xl -al, X2-a2, ... , Xn -an) where al, a2, ... , an E Q. 

An ideal can have many bases. For example, the ideal in the first example has {3} 
as its basis whereas the ideal in the second example has {9, 30} as it basis, but the two 
ideals are the same. 

Let 

I= (/1, /2, ... , fr) ~ Q[xl, X2, ... , Xn]· 

Let ( a1, a2, ... , an) E en be a common zero of /1, /2, ... , fr, i.e. 

f;(al,a2, ... ,an)=O, i=1, ... ,r. 

Since, for an~ f E I, there exist g; E Q[x1, x2, ... , Xn] such that f = I:~ gi/;, it follows 
that f( ai; a,2_~, . .. , an) = 0, i.e. ( a1, a2, ... , an) is a zero of every polynomial in the ideal. 
~~ ~ ' 

Zero(I) = {(al, a2, ... , an) E en I \If E I, f(a1, a2, ... , an)= 0} 
' is called the zero set of the ideal I. 

Earlier we considered a polynomial equation defining a cusp, f(x, y) = x3 - y2, and 
another polynomial equation defining an ellipse, g(x, y) = 2x2+(y-1)2 -2. Let I=(!, g). 
The location of the points of intersection of the two curves is not evident from the 
equations f(x, y) = 0, g(x, y) = 0. It will be shown later that the set , 

G = {g1(x)=x6 +4x5 +4x4 -6x3 -4x2 +1, 

g2(x, y) = y + 1/2( -x3
- 2x2 + 1)} 

is another basis for the ideal I. Notice that G has one polynomial that depends only on 
x, namely g1(x), and one that depends on both x andy, i.e. g2(x, y). The roots of g1(x) 
are the x-coordinates of the points of intersection of the cusp f( x, y) = 0 and the ellipse 
g(x, y) = 0. For each root a of g1(x), they-coordinates of the corresponding intersection 
points are found by computing the roots of g2 (a, y). As in linear algebra, we say that the 
above two polynomials in G are in triangular form. 

2. Resultants 

Given two polynomials f(x), g(x) E Q[x] of degrees m and n respectively, i.e. 

f(x) fnxn + fn-1Xn- 1 + .. . /lx + fo, and, 

g(x) gmxm + gm-1Xm- 1 + ... + g1x +go, 



52 D. Kapur and Y.N. Lakshman 

when do f and g have common roots? The question leads naturally to a condition that 
has to be satisfied by the coefficients off and g. This condition was discovered by Euler 
and is now commonly referred to as the vanishing of the Sylvester resultant off and g. 
The Sylvester resultant of J, 9 is the determinant of the following matrix: 

fo 0 0 0 90 0 0 0 
it fo 0 0 91 9o 0 0 
h it fo 0 92 91 9o 0 

R= 
fn fn-1 fn-2 fn-m+1 9n 9n-1 9n-2 90 
0 fn fn-1 fn-m+2 9n+1 9n 9n-1 91 

0 0 0 fn 0 0 0 9m 

Assuming that at least one of fn, gm is non-zero, the vanishing of the Sylvester resultant 
is a necessary a"!d sufficient condition for f and 9 to have common roots. 

Resultants are most commonly used for computing projections and for successive elim
ination of variables. The Sylvester resultant has been studied extensively in the past. We 
refer the interested reader to the beautiful subresultant theory developed simultaneously 
and independently by G.E. Collins and W.S. Brown. For an exposition of the theory, 
see Knuth (1980, pp. 407-408), Loos (1983), Collins (1967, 1971) and Brown and Traub 
(1971). Efficient implementations of algorithms for computing resultants are available in 
most computer algebra systems including REDUCE, MACSYMA, MAPL~, and MATH-

EMATICA. ~:~>·".: 
J;'' 

2.1. DIXON's FoRMULATION 

In 1779, Bezout had already developed a method for computing the resultant of two 
univariate polynomials. We describe Cayley's reformulation of Bezout's method. It is 
simple to explain and extends naturally to the bivariate case as shown by Dixon. Cayley 
proposed viewing the resultant off( x) and 9( x) as follows. Replace x by a in both f( x) 
and 9(x) and we get polynomials f(a) and g(a). The determinant .6.(x, a) of the matrix 

I 
f(x) 

f(a) 
g(x) I 
g(a) 

is a polynomial in x and a and it obviously is equal to zero if x = a. This implies that 
the determinant has (x- a) as a factor. The polynomial 

c( ) _ .6.(x, a) 
ux,a-( ) x-a 

is an n- 1 degree polynomial in a and is symmetric in x and a. It vanishes at every 
common zero x 0 of f(x) and g(x) no matter what values a has. So, at x = x0 , the 
coefficient of every power product of a in o(x, a) is 0. This gives n equations which 
are polynomials in x, and the maximum degree of these polynomials is n - 1. Any 
common zero of f(x) and g(x) is a solution of these polynomial equations, and these 
polynomial equations have a common solution if the determinant of their coefficients is 

'. 
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0. Unlike in Sylvester's formulation, where the resultant off and g is the determinant of 
an (m + n) X (m + n) matrix, in the Cayley-Dixon formulation, the resultant is obtained 
as the determinant of a n x n matrix. 

For example, consider a generic cubic polynomial: 

p = ax3 + bx2 + ex + d. 

The discriminant of p is the resultant of p and dpfdx. The polynomial p has multiple 
roots if and only if its discriminant is zero. Let us compute the discriminant of p by 
Cayley's method. We have 

dpfdx = 3ax2 + 2bx +c. 

The determinant of the matrix: 

I 
ax3 + bx2 + ex + d 3ax2 + 2bx + c 
aa3 + ba2 + ca + d 3aa2 + 2ba + c 

when divided by x- a gives the polynomial: 

(3a2x2 +2abx+ac)a2 +(2abx2+(2b2 -2ac)x+(bc-3ad))a+(acx2+(bc-3ad)x+(c2 -2bd). 

We get three equations by equating the coefficients of the power products of a above to 0: 

3a2 x2 + 2ab 
2ab x2 + (2b2 - 2ac) 
ac x 2 +(be- 3ad) 

x+ac 
x +(be- 3ad) 
x + (c2 - 2bd) 

0, 
o, 
0. 

Treating x 0 , x1 , x2 as unknowns, we have three homogeneous equations in three un
knowns; they ,have a common solution if and only if the determinant of the coefficient 
matrix is 0, i.e. 

3a2 2ab 
2ab (2b2 - 2ac) 
ac (be- 3ad) 

ac 
(be- 3ad) 
(c2 - 2bd) 

The reader may want to compare this determinant with the Sylvester resultant given by 
the determinant · 

a b c d ·o 
0 a b c d 

3a 2b c 0 0 = -a( -c2 b2 + 4ac3 + 4b3 d - 18abdc + 27 a 2 d2
). 

0 3a 2b c 0 
0 0 3a 2b c 

The Dixon resultant has an extraneous factor of a as compared to the Sylvester resul
tant. This factor arises because Cayley's formulation assumes that both the polynomials 
are of the same degree. In general, the cBezout resultant computed using the Cayley
Dixon formulation will have an extraneous factor 1/deg.ree(f)-degree(g)), where 11 is the 
initial of f(x). 

Dixon (1908) showed how to extend this formulation to three polynomials in two 
variables. Consider the following three generic hi-degree polynomials which have all the 
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power products of the type xiyi, where 0 ~ i ~ m, 0 ~ j ~ n, i.e. 

f(x, y) ='I: a;jxiyi, g(x, y) = 'Ei,j b;jxiyi, h(x, y) =I: c;;xiyi. 
i,j 

Just as in the earlier case, Dixon observed that the determinant 

tl(x, y, a, fJ) = 
f(x, Y) 
f(a, y) 
f(a,{J) 

g(x,y) 
g(a, y) 
g(a,{J) 

h(x, y) 
h(a, y) 
h(a,{J) 

i,j 

vanishes when a or fJ are substituted for x or y, respectively, implying that (x-a)(y-{3) 
is a factor of the above determinant. The expression 

( ) 
tl(x,y,a,{J) 

6 x,y,a,{J = (x-a)(y-{3) 

is a polynomial of degree 2m-1 in a, n-1 in {J, m-1 in x and 2n-1 in y. Since the above 
determinant vanishes when we substitute x = x 0 , y = y0 where (x 0 , y0 ) is a common zero 
of f(x, y), g(x, y), h(x, y), into the above matrix, 6(xo, Yo, a, fJ) must vanish no matter 
what a and fJ are. The coefficients of each power product ai [Ji, 0 ~ i ~ 2m - 1, 0 ~ 
j ~ n -1, have common zeros which include the common zeros of f(x, y), g(x, y), h(x, y). 
This gives 2mn equations in power products of x, y, and the number of power products 
xiyi, 0 ~ i ~ m- 1, 0 ~ j ~ 2n- 1 is also 2mn. The determinant of the coefficient 
matrix from these equations is a multiple of the resultant. Using a simple geometric 
argument, Dixon proved that in this case, the determinant is in fact the resultant up 
to a constant factor. For three arbitrary polynomials, Dixon develope<;ksome special 
methods which selected some coefficients of ai[Ji from 6, and used dialytf(expansion of 
f(x, y), g(x, y), h(x, y) to come up with a system of k linearly independent polynomial 
equations expressed using k power products in x, y. 

As an example, consider the following two hi-quadratics and a linear form. 

II a1xix~ + a2xi; 

12 b1xix~ + b2x~; 
/3 U!Xl + U2X2 + U3 

The polynomial6(xl,x2,a,{J) can be given as: 

(1 a fJ a 2 a 2{J a{J a 3 a 3fJ) (1 x3 x2 3 2 Tr 
D 2 X! X2 2 X1X2 X1X2 x1x2) 

where D is the 8 by 8 matrix : 

0 0 0 0 0 a1 u3b2 0 a2u3b2 
0 a1u3b2 0 a2u3b2 0 a1 u1b2 0 a2u1b2 
0 0 a2u3b2 0 0 a1 u2b2 a1 u3b2 a2u2b2 
0 a1u1b2 0 0 0 0 a2u2b1 a2u3b1 
0 0 - a2u3b1 0 a1u1b2 0 0 a2u2b1 

a2u3b2 a1u2b2 a2u1b2 a2u2b2 a1 u3b2 0 a1 u1b2 0 
0 0 0 a2u3b1 a2u2b1 0 0 a2u1b1 

a2u3b1 0 a2u1b1 a2u2b1 0 0 0 0 
(' 
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The determinant of D, 

is the resultant up to a constant factor. 

Chionh's thesis (Chionh, 1990) gives a good summary of Dixon's approach to resul
tants. He also discusses how Dixon's resultants for the two variable case can be used for 
implicitization and finding base points. 

2.2. MULTIVARIATE RESULTANTS 

Macaulay constructed a resultant (henceforth referred to as the Macaulay resultant) 
for n homogeneous polynomials in n variables (Macaulay, 1916). It simultaneously gen
eralizes the Sylvester resultant and the determinant of a system of linear equations (in 
the sense that the Macaulay resultant for two homogeneous polynomials in two variables 
is the same as their Sylvester resultant, and the Macaulay resultant for a system of n ho
mogeneous linear equations inn variables is the same as the determinant of the system). 
Macaulay's resultant disappeared from the literature for several decades until it was used 
in a slightly different form by Lazard (1981) for equation-solving. More recently, Canny 
(1988) resurrected the Macaulay resultant and used it in his roadmap algorithm for the 
robot motio~~!glanning problem. 

The Macaol~y resultant can be used to eliminate several variables at once from a 
system of polynomial equations. Macaulay used his resultant construction to actually 
determine the solutions of a system of homogeneous polynomial equations. If one wishes 
to solve non-homogeneous polynomial equations using the Macaulay resultant, one has 
to homogenize the polynomials first. Methods based on Macaulay's matrix give out zeros 
in pn for the homogenized system of equations and they can include zeros at infinity, 
which will have to be dealt with if one is interested only in affine common zeros. 

2.3. MACAULAY'S MATRICES 

In this section, we describe Macaulay's construction. The key idea is to show which 
power products are sufficient in the dialytic method to be used as multipliers for the 
polynomials, so that we get a square system of I linear equations in I power products 
which can be considered as the unknowns. 

Let fi,f2, ... ,fn ben homogeneous polynomials in x1,x2, . .. 1 Xn. Let d; = deg(fi) 
and 

n 

dM = 1 + I.:(d;- 1). 

Let T denote the set of all terms of degree dM in the n variables x1, x2, ... , Xn, i.e. 

T = {xf'x~2 
•• • x~nla1 + a2 + · · · + C¥n = dM} 
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and 

ITI = (dM + n - 1). 
n-1 

The polynomials are multiplied with appropriate power products to generate ITI equa
tions in ITI unknowns which are power products of degree dM. The order in which the 
polynomials are considered for selecting multipliers results in different systems of linear 
equations. 

Example: We will use a generic system of one linear and two quadratic polynomials in 
three variables to illustrate various aspects of Macaulay's construction. Let 

= 2 2 2 d 2 a1,1x1 + a1,2x1x2 + a1,ax1xa + a2,2x2 + a2,ax2xa + aa,axa, 1 = , 

= b1,1xi + b1,2X1X2 + b1,aX1Xa + b2,2X~ + b2,aX2Xa + ba,aX~, d2 = 2, 

c1x1 + c2x2 + caxa, da = 1 and dM = 3. 

The number of terms in three variables of degree 3 is 10. To determine the power products 
to be used as multipliers to obtain a 10 by 10 system, we will use the ordering (/1, /2, fa) 
to illustrate the construction. The first three rows are obtained by multiplying /1 by 
the power products of degree 1, the difference of dM and the degree of /1; these power 
products are: XlJ x2, xa. The next three rows are obtained also by multiplying h by the 
power products of degree 1 that are not multiples of xi. In this case, they are x1, x2, xa. 
The last four rows are obtained by multiplying fa by the power products of degree 2, the 
difference of dM and the degree of /a, that are not multiples of either xi, !Jr x~. These 
power products are: x1x2, x1xa, x2xa, x~. /{:· 'cc; 

Macaulay's matrix in this case is: 

X1 
X2 

xa 
X1 
X2 

xa 
X1X2 
X1Xa 
X2Xa 

X~ 

xr 
a1,1 

0 
0 

b1,1 
0 
0 
0 
0 
0 
0 

a1,2 
a1,1 

0 
b1,2 
b1,1 

0 
C1 

0 
0 
0 

C1 

0 
0 

a2,2 

a1,2 
0 

b2,2 
b1,2 

0 
C2 

0 
0 
0 

a2,a 
a1,a 
a1,2 
b2,a 
b1,a 
b1,2 
ca 
c2 
C1 

0 

The general construction is given below. Let 

T(o) {terms of degree dM- dl}, 

aa,a 0 
0 a2,2 a2,a aa,a 

a1,a 0 a2,2 a2,a 
ba,a 0 0 0 

0 b2,2 b2,a ba,a 
b1,a 0 b2,2 b2,a 
0 0 0 0 
ca 0 0 ( 0 

0 0 
C1 0 

T(l) {terms of degree dM- d2 and not divisible by xf1 
}, 

X~ 
0 
0 

aa,a 
0 
0 

ba,a 
0 
0 
0 

T(2
) {terms of degree dM- d2 and not divisible by xf1

, or by xg2
}, 

r<n-1) {terms of degree dM- dn and not divisible by 
d1 d2 dn-1} x1 or x2 or ... or xn_ 1 . 
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Macaulay refers to y(i) as the reduced set of terms with respect to x1, ... , Xi (so a term 
is reduced with respect to Xt, •.. , x; if it is not divisible by any of xf1

, x~l, ... , xf;). 
Now, construct a matrixA with ITI columns and L; IT(i)l rows. The columns of A are 
labeled by the terms in Tin some order. The first IT(0 )1 rows are labeled by the terms in 
y(o), the next IT(l)l rows are labeled by the terms in T(1) and ~o on. In the row labeled 
by the term t E T(i), arrange the coefficients of tfi+1, with the coefficient of a term t' in 
tfi+1 appearing under the column labeled by t' (note that tfit1 has degree dM ). 

We reproduce below Macaulay's argument showing that the matrix A thus constructed 
is square. Let ai denote the coefficient of xf; in fi for i = 1, 2, ... , n (note that this 
coefficient could possibly be 0). Since each row contains the coefficients of some fi alone 
(shifted appropriately), every row contains exactly one ai. 

Every column contains at least one ai. Suppose not. Let the label of a column not 
containing ai bet. So, there is no term t' and no i such that t' xf; = t which implies that 
t is not divisible by xf; for any i. This implies that deg(t) :::; Li( di - 1) < dM, which is 
a contradiction since deg(t) = dM. 

Each column contains at most one ai. The proof is again by contradiction. Suppose a 
column labeled by t has a;, aj with i < j; this means that there are terms it E y(i-1) and 
t2 E y(i-1) such that t1xf; = t2xfi = t. This implies that xf; divides t2; but t2 E y(i-1), 

which means that it is not divisible by xf1 or x~2 , so on up to xf~-11 ; in particular, t2 is 

not divisibleJfy xf; since i < j, which is a contradiction. 
'.~, 

We have thus shown that each row and each column has exactly one ai and this 
establishes a one-to-one correspondence between rows and columns, which implies that 

ITI = L IT(i)l 

and A is a square matrix. 

Let det(A) denote the determinant of A, which is a polynomial in the coefficients of 
the fi's. It is homogeneous in the coefficients of each fi and the degree. of det(A) in the 
coefficients of fn is d1d2 ... dn-1 (this is the number of rows of A labeled by the terms 
in y(n); these rows contain the coefficients of fn)· . 

The construction of A depends on how the polynomials are ordered. A different order 
produces a different matrix. The ideal generated by the determinants of all such matrices 
is the so-called ideal of inertial forms, a concept that goes back to Hurwitz (van der 
Waerden, 1950) and this ideal is known to be principle. Let det(Au) denote the deter
minant of a matrix constructed using a permutation a of the polynomials ft, /2, ... , fn· 
The greatest common divisor of the det(Au) 's (a E Sn, the symmetric group on n letters) 
regarded as polynomials in the indeterminate coefficients of the fi is defined to be the 
resultant (denoted R) of the system {It, /2, ... , fn}. 

For the above example, the resultant is the greatest common divisor of th.e determinants 
of all such matrices (3! = 6 of them in this case). 

We list some important properties of the resultant below. 

1. R = 0 if and only if the /;'s have a non-trivial common zero. 
2. R is absolutely irreducible and invariant under linear coordinate transformations. The 
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vanishing of R is thus a necessary condition for the system to have a common zero 
and it is the smallest such condition. 

3. R is homogeneous in the coefficients of each fi and has degree (flj=1 d;)/d; in coef
ficients of li. For instance, in the above example, the resultant 1s a polynomial in 
which each term has degree 2 in a; ,k, degree 2 in b; ,k and degree 4 in c;. 

4. If In = gh, then the resultant of It, /2, ... , In is a product of two resultants R1 (of 
ft,f2, ... ,g) and R2 (of ft,f2, ... ,h). 

Macaulay also constructed the following formula relating R and det(Aa) : 

Rdet(Ba) = det(Aa) 

where det(Ba) is the determinant of a submatrix of Au. The submatrix Ba is obtained 
by deleting all columns labeled by terms reduced (in Macaulay's sense) in any n- 1 of 
the variables, and, those rows which contain one of the a;s in the deleted columns. 

Example: In the earlier example, the submatrix B for the Macaulay matrix is 

X~X3 X~X3 

X3 ( a1,1 a2,2 ) 
X3 b1,1 b2,2 • 

The matrix B was obtained by deleting columns that are reduced (in Macaulay's sense) in 
any two variables (e.g. xr is not divisible by X~ or by X3 1 SO it is reduced. in X2, X3j hence, 
the column labeled xr was deleted, a similar reason for deleting the other columns). The 
surviving columns are reduced in fewer than n -1 variables; for example,,:f:ixa is divisible 
by x~, x3 but not by x~. Hence, it is reduced in x2 only. The rows that:~~o11tained an a; 
(in this example, this means one of al,l, b2,2~ ca) in the deleted columns{,are- also deleted. 
For example, the first row was deleted because it contained a1,1 in a deleted column, 
namely, the column labeled xr. 

The crucial point here is that Macaulay's formula works in "general", or when the 
coefficients are taken to be indeterminates. If one wants to compute R for a specific 
system of polynomials using this formula, one may encounter the problem of having 
det(Ba) = 0. A similar problem can arise if we try to computeR as the gcd of det(Aa )'s 
due to the vanishing of some or all of the det(Ba )'s. The computation of the resultant 
as a generic polynomial in the indeterminate coefficients of li is infeasible, as it is very 
large, even for low degree input polynomials. 

2.4. THE U-RESULTANT 

Suppose we have a system of n polynomials in n variables, i.e. 

and we wish to find their common zeros. Let d; denote the total degree of I;. Introduce 
a new homogenizing variable x0 and let Ru denote the Macaulay resultant of the (n + 1) 
homogeneous polynomials h ft, h h, ... , h In, lu in ( n + 1) variables xo, X}, • .. , Xn where 
lu is the linear form 



Elimination Methods 59 

and uo, u1, ... , Un are new unknowns. Ru is a polynomial in uo, u1, ... , Un. It is homoge
neous in the Ui of degree B = IJ~=l di (these observations follow from the properties of 
the Macaulay resultant listed earlier). Ru is known as the u-resultant of the given system 
of polynomials. It can be shown that Ru factors into linear factors over the complex 
numbers, i.e. , 

B 

Ru =IT (uoao,j + u1a1,j+ ... +unat:~.i) 
i=l 

and if ( uoao,j tul~l,j + .. ·tunan,i) is a factor of Ru, then (ao,j '. al,_i, ... , an,j) is a com
mon zero of of ft, /2, ... , fn. The converse can also be proved, 1.e. If (fJo,j, fJ1,j, ... , fJn,j) 
is a common zero of h ft, h /2, ... , h fn then ( uofJo,j + u1fJ1,j + ... + UnfJn,j) divides Ru. 
This gives an algorithm for finding all the common zeros of h ft, h /2, ... , h fn. 

Example: Consider the unit circle x~ + x~- 1 = 0 and the pair of straight lines (x1 -
x2- 1) (x1 - x2 + 1). To find their intersection, we compute their u-resultant which is 
the Macaulay resultant of 

2 2 2 xl + x2- Xo 

xi - 2XIX2 +X~- x6 
UoXo + U1X1 + U2X2. 

The u-resultapt is computed to be the polynomial 
22 22 22 4 ulu2- uluo- u2uo + uo 

which factors as 

(O.u1- l.u2 + l.uo)(O.ul + l.u2 + l.uo)(-l.ul +CO.u2 + l.uo)(l.ul + O.u2 + l.uo). 

We can read off the four intersection points from the linear factors as 

(0, -1), (0, 1), ( -1, 0), (1, 0). 

Constructing the full u-resultant, however, is an almost impossible ta8k (it is a polyno
mial of degree TI~=l di in n variables). So, if one is interested in computing the common 
zeros of a set of polynomials, one does so by computing specializations of Ru. For exam
ple, the univariate polynomial R 1(u0) obtained by substituting Ui = 0 fori= 2, ... ,n 
and u1 = -1 has as its roots the x1 coordinates of the common zeros. R1(u0 ) can be 
computed from the Macaulay matrices by evaluation of determinants with rational (or 
complex) entries and interpolation and without constructing the full u-resultant. For 
more details, see Canny (1988), Lakshman (1990a), Lakshman and Lazard (1991) and 
Manocha and Canny {1991). 

This method does not always work, however. Since for each common zero (fJI,j, ... , fJn,j) 
of the fi 's, the linear form ( uo + u1fJ1,j + ... + unfJn,j) divides the u-resultant Ru, if the 
given system of polynomials ft, /2, ... , fn has infinitely many common zeros, then the u

resultant Ru of the system is identically zero and one cannot compute the common zeros 
by this method. Therefore, we assume that the given system of polynomials ft, /2, ... , fn 
has only finitely many common zeros. However, even this is not sufficient since the u
resultant vanishes whenever there are infinitely many common zeros of the homogeneous 
polynomials hft,h/2, ... ,hfn· It may happen that ft,/2, ... ,/n have only finitely many 
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common zeros but hft, h/2, ... , hfn have infinitely many common zeros - all but a finite 
number of them at infinity (when this happens, the zero set is said to have an excess 
component at infinity). 

Example: The u-resultant of 

ft =X~- X~+ 2X2 + 1, and /2 =X~- 2X1X2 +X~+ X1 + 2 

is zero because they have a common component at infinity given by x1 = x 2 • 

Often, one has a system of non-homogeneous polynomials that are known to have only 
finitely many common zeros but the corresponding homogeneous system may have excess 
components at infinity. The u-resultant algorithm cannot be used as it is in this situation. 
Grigoriev and Chistov (1983) and Canny (1990) suggest a modification of the algorithm 
that will give all the affine zeros of the original system (as long as they are finite in 
number) even in the presence of excess components at infinity. We now briefly describe 
their approach. 

Let ft, /2, .. :, In be as before. Let 

fori= 1, ... , n, 

and 

9u = (uo + .A)xo + U1X1 + ... + UnXn 

where .A is a new unknown. Let Ru(.A, uo, ... , un) be the Macaulay resultant of 91, 92, ... , Yn 
and Uu, regarded as homogeneous polynomials in xo, Xt, ... , Xn. Ru(.A, uo, .~·c'· ._, un) is called 
the generalized characteristic polynomial of f1, ... , fn· Now, look at Ru(X~uo) ... , un) as 
a polynomial in .A whose coefficients are polynomials in uo, Ut, ... , Un, i,~;c 

Ru(.A, Uo, · · ·, Un) = .A6 + R6-l_xb-l + ... + Rk.Ak 

where k ~ 0 and the Ri are polynomials in uo, Ut, ... , Un (if k = 0, Rk will be the same 
as the u-resultant Ru; however, if there are excess components at infinity, then k > 0). 
The trailing coefficient Rk shares a very useful property with the u-resultant, namely, it 
can be shown that Rk factors into linear factors over the complex numbers, i.e. 

B 

Rk = IT ( uoao,j + u1 a1,j + ... + Unan,j) 
j=l 

and if ( uoao,; + u1 a1,j + ... + Unan,j) is a factor of Rk, then ( ao,j, a1,j, ... , an,j) is a 
common zero ofofh!l, hh, ... , hfn· The converse can also be proved, i.e. if(/h,j, ... ,f3n,j) 
is an affine common zero of It, /2, ... , In then ( uo + u1f31,j + ... + unf3n,j) divides Rk. 
This gives us a way to recover all the affine common zeros of It, h, ... , In even in the 
presence of excess comp-onents· at infinity. Again, in practice, one never constructs the 
complete generalized characteristic polynomial of a system of polynomials. As with the 
u-resultant, one can recover the affine common zeros by computing specializations of the 
generalized characteristic polynomial. 
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2.5. IMPLEMENTATIONS OF MULTIVARIATE RESULTANTS 

Multivariate resultant algorithms (both Dixon's method for the bivariate case as well 
as Macaulay's method) can be easily implemented on computer algebra systems since the 
main calculation needed is that of determinant of a matrix. Sederberg (1983) presents 
an implementation of Dixon's method. Chionh (1990) reports experimenting with the 
implementations of Dixon's method and Macaulay resultants in MAPLE for implicitiza
tion, parameterization and surface intersection problems. Since the matrices that arise 
are large with polynomial entries, special techniques such as interpolation and modular 
methods are needed to do slightly nontrivial examples. 

Manocha and Canny (1991) have recently reported impressive results in using mul
tivariate resultant-based methods for implicitization problems using interpolation and 
modular methods. This is the first and very impressive illustration of multivariate re
sultants outperforming Grobner basis methods and characteristic set methods for the 
implicitization problem. 

3. Grobner Bases Computations 

We first establish some of the basic notions needed for our exposition of Grobner basis 
computations,; The discussion below assumes the coefficient field to be Q. However, the 
development gf Grobner basis theory as discussed below carries over to polynomial rings 
in a finite nufuber of variables over most fields (field of complex numbers, finite fields, 
field of rational functions ink variables over the complex numbers, ... ). 

3.1. TERM ORDERINGS 

As said before, a term or power product is any product of powers xf1 x~2 
••• x~" of the 

variables Xt, x2 , ••• , Xn with ai ~ 0. For a term t = xf1 x~2 
••• x~", d~g(t) denotes the 

total degree of the term t, i.e. deg(t) = at+ a 2 + ... +an. We are i~terested in total 
orderings (denoted by --<) on terms that satisfy the following properties. 

1. Compatibility with multiplication: if t, it, t2 are terms, then, tt --< t2 ==> tit --< t t2. 

2. Termination: there can be no strictly decreasing infinite sequence of terms such as 

it~ t2 ~ h ~ .... 

Such term orderings are called admissible orderings and they play a key role in the 
development of Grobner basis theory. Commonly used term orderings are 

(i) the Lexicographic Order, --<1, in which terms are ordered as in a dictionary i.e. for 
terms it, t2 with it = xf1 x~2 

••• x~" and t 2 = x~1 x~2 
••• x~" then it --<1 t2 iff 3i :::; n 

such that <Xj = /3j for i < j :::; n and a; < /3;. For example, for terms made up of 
two variables Xt, x 2 , where Xt --< x 2 , we have 

1 2 3 2 2 2 22 
--<1 Xt --<1 Xt --<1 Xt ... --<1 X2 ..(I XtX2 ..(I XtX2 •.. ..(I X 2 --<1 XtX 2 ..(I XtX 2 ••• 



62 D. Kapur and Y.N. Lakshrnan 

(ii) the Degree Order, -<d, in which terms are compared first by their degrees, and equal 
degree terms are compared lexicographically i.e. 

t1 -<d t2 iff deg(t1) < deg(t2) or deg(t1) = deg(t2) and t1 -<1 t2. 

For example, in the bivariate case, assuming x1 -< x2 we have 

1 2 2 3 2 2 3· -<d X1 -<d X2 -<d X1 -<d X1X2 -<d X2 -<d X1 -<d X1X2 -<d X1X 2 -<d X2 . ·. 

3.2. HEAD TERMS AND THE NOTION OF REDUCTION 

Given an admissible term order -<, for every polynomial f in Q[xt, x2, ... , xn], we call 
the largest term ( under -< ) in f that has a non-zero coefficient as the head term off, 
denoted by head(/). By ldcf(f), we denote the leading coefficient of/, i.e. the coefficient 
of head(!) in f. Clearly, for every polynomial/, we can write 

J = ldcf(f) head(!)+ g where head(g) -<head(!). 

We write tail(!) for g. For example, if 

f(x, y) = x3
- y2

, then 

head(!) = x3 and tail(!) = -y2 

under the total degree ordering -<d, and 

head(!) = y 2
, tail(!) = x3 

under the purely lexicographic ordering with x -<1 y. 

Let f and g be two polynomials; suppose g has a term t with a non-zero coefficient 
that is a multiple of head(!), i.e. 

g = at + g where a E Q and t = t' head(!) 

for some term t'. We say that g is reducible with respect to f and denote a reduction by 
/as 

where 

f g---+ h 

h = g - a t' 1 = a t' tail(!) + 9, and a ldcf(f) = a. 

The polynomial g is said to be reducible with respect to a set (or basis) of polynomials 
F = {11, /2, ... , fr} if it is reducible with respect to one or more polynomials in F; else 
we say that g is reduced pr g is a normal form with respect to F. 

Given a polynomial g and a basis F = {11, /2, ... , fr }, through a finite sequence of 
reductions 

F F F 
g = gl ---+ g2 ---+ g3 ... ---+ g8, 

we can obtain a polynomial g8 that is reduced with respect to F. Two things to note: 

• Clearly, any sequence of reductions has to end after a finite number of reductions; 
if not, we can create an infinite decreasing chain of terms from this sequence which 
contradicts the assumption that the term ordering being used is terminating. 
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• For every 9i in the. above reduction sequence, 

9i -9 E (11,/2, ... ,fr)• 

Let us consider an example. Let 

11 = :~:~x2-2:~:2:~:3+1, h = 2:12:~-:~:~+2:~:1, fa= :~:~x3-x~+5, and, 9 = 3:~:~x~+xf-l. 
Let F = {11, /2,/3}. Under -<d, 

head(f1) = :1:~:1:2, head(h) = x1:~:~, head(f3) = x~2:3 

and 9 is reducible with respect to F. One possible reduction sequence is: 

~J 

h 6 2 3 3 1 Ia 6 2 3 3 31 9 = 91 ~ 92 = X2X3- X2 + X1 - ~ 93 = :!:1 - :1:2 + X1 -

and 93 is a normal form with respect to F. It is possible to reduce 9 in another way that 
leads to a different normal form! For example, we have 

/2 I 3 2 3 62 1 
9 = 91 ~ 92 = X1X3 + X1 - :1:1 -

and the normal form 9~ is different from 93. For an arbitrary set of basis polynomials, 
we cannot expect to avoid this phenomenon. A Grabner basis has the following special 
property: 

DEFINITION ;3.1. A basis G E Q[:~:b x 2, ... , :~:n] is called a Grabner basis for the ideal it 
generates if,IJlJ-d only if every polynomial in Q[:~: 1 , x 2 , ••• , xn] has a unique normal form 
with respect t'o G. 

Grabner ba$es were introduced by Buchberger (1965, 1976). One of his fundamental 
contributions was to show that every ideal in Q[x1, :~: 2 , ... , xn] has a Grobner basis. He 
designed an algorithm to construct a Grobner basis for any ideal I in Q[x1, x 2 , ••• , xn] 
starting from an arbitrary basis for I. 

Let us consider the earlier example for a moment. We found at least two normal forms 
(g3 and 9~) for the polynomial 9 with respect to F. The reason was that g had a monomial 
that was reducible by two polynomials in the basis F, i.e. head(9) was a common multiple 
ofhead(l1) and head(/2). The ambiguity concerning the normal form of 9 with respect to 
F can be resolved by augmenting the basis F by the polynomial 93 - 9~ (the augmented 
basis still generates the same ideal since 93- 9~ E (F)). Buchberger's algorithm attempts 
to resolve the situation for all terms that have more than one normal form with respect 
to F. The key insight in Buchberger's algorithm is to show that we need to consider only 
a finite set of terms. To this end, we define an s-polynomial of two polynomials 11, f2. 
Let 

m = lcm(head(l1), head(/2)) = m1 head(l1) = m2 head(/2) 

where m1, m2 are terms. Define 

s-poly(l1, /2) = m1 ldcf(/2)11- m2 ldcf(l1)f2· 

In the following description of Buchberger's algorithm, by N:F a (f), we denote any nor
mal form of f with respect to the current elements of the basis G. The basis G is 
augmented until N:Fa(s-poly(9i, 9i)) is zero for the s-polynomial of every pair of poly
nomials in G. 
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Given a basis F for an ideal I and an admissible term ordering-<, the algorithm returns 
a Grabner basis for I for the term ordering-<. 

G:=F; 
B := {(f;,fj} I f;,/j E F,i < j}; 
while B is non-empty do 

od; 

h := N:Fa(s-poly(f;, /j)); %for some(!;, /j} E B 
if h # 0 then 

fi; 

B := B U {{h,g)lg E G}; 
G:=GU{h}; 

B := B \ {(!;, /j)}; 

For the well-known proofs of termination and correctness of the algorithm, the reader is 
referred to Buchberger (1965, 1976). We now list some of the most important properties 
of Grabner bas~s in the form of a theorem. 

THEOREM 3.1. The following properties are equivalent: 

1. G is a Grobner basis for the ideal I with respect to a term order-< . 
2. For every pair of polynomials Yl, Y2 E G, the normal form of the s-polynomial of Yl, Y2 

with respect to G is zero. , 
3. Every polynomial f in Q[xt, x2 , ••• , Xn] has a unique normal form with respect to G. 
4. A polynomial f is a member of the ideal I if and only if its normal for,7TJ; with respect 

to G is zero. /~\ ·· 

Examples: Consider the ideal I generated by 

f(x, y) = x3
- y2 , g(x, y) = 2x2 + (y- 1)2 - 2 

that we saw earlier (! defines a cusp and g defines an ellipse). 

G1 = {y2 + 2x2
- 2y- 1, x 3 + 2x2

- 2y- 1} 

is a Grabner basis for I under the degree ordering with x -< y. 

G2 = {g1(x) = x6 + 4x5 + 4x4
- 6x3

- 4x2 + 1, 

Y2(x, y) = y + 1/2( -x3
- 2x2 + 1)} 

is a Grabner basis for I under the lexicographic ordering with x -< y. 

G3 ,;, {h1(y) = y6
- 6y5 + 17y4 + 4y3

- 9y2
- 6y- 1, 

h2(x, y) = x + 1/4(2y5
- 13y4 + 40y3

- 10y2
- 18y- 5)} 

is a Grabner basis for I under the lexicographic ordering with y -< x. 

These examples illustrate the fact that, in general, an ideal has different Grobner bases 
depending on the term ordering that we choose. But, can an ideal have different Grobner 
bases for the same term ordering? The answer is no, provided we restrict our attention 
to the so-called reduced Grobner bases. 

DEFINITION 3.2. A Grabner basis is called a reduced Grobner basis iff for every g E G, 
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where G' = G \ {9}, i.e. each polynomial in the basis G is reduced with respect to all the 
other polynomials in G. 

In the above example, G1, G2 , G3 are all reduced Grobner bases. The basis 

Go={!} U G1 

is a Grobner basis for I under the degree lexicographic ordering. However, it is not a 
reduced basis since f is reducible with respect Go\{!}. From here on, by a Grobner 
basis, we mean a reduced Grobner basis unless specified otherwise. The choice of the term 
ordering depends on what we wish to use a Grobner basis for. Also, the time needed to 
compute a Grobner basis is very sensitive to the term ordering used. 

In the Grobner basis G 2 for the above example, there is a polynomial 91 ( x) that 
depends only on x and one that depends on both x, y ( in general, there can be several 
polynomials in a Grobner basis that depend on x, y). We say that the variables are 
separated in the basis G 2 • A basis in which variables are separated is similar to a triangular 
form; in a triangular form, there is at most one polynomial in x1, x2 , ···,Xi for each 
1 ~ i ~ n, but in a basis in which variables are separated, there can be more than one 
polynomials in x1, x2 , ···,Xi for each 1 ~ i ~ n. Such a separation of variables can be used 
to compute all the common zeros of the ideal I. We first find all the roots of the univariate 
polynomial 91 ( x). These give the x-coordinates of the common zeros of the ideal I. Similar 
to the case of' a linear system of equations, we can perform back substitution. For each 
root a or'91·;1}ve can find the common roots of g2(a, y), ... which give the y-coordinates 
of the corre~p.onding common zeros of I. This algorithm is mentioned only to indicate 
the kind of uses that one can derive from Grobner bases. 

' 
Ideal bases in which the variables are separated are very useful in solving a variety of 

problems. In fact, the separation observed in Grobner bases G2 , G3 above is not acci
dental. It was observed by Trinks (and Buchberger) that such a separation of variables 
exists in Grobner bases whenever the term ordering used is a lexicographic one. We now 
illustrate the observations of Trinks (1978) and Buchberger (1985). 

Let I be an ideal in the polynomial ring Q[x1, x2 , ••• , xn] and let j < n. The set of all 
the polynomials in I that depend only on x1, ... , x; constitute a sub:-ideal of I. More 
precisely, let 

I; =InQ[x1, ... ,x;]. 

The ideal I; is called the contraction of the ideal I to the subring Q[x1, ... , x;]. Some 
authors refer to it as the j-th elimination ideal of I. 

THEOREM 3.2. Let G be the reduced Grabner basis for an ideal I ~ Q[x1, x2 , ... , xn] 
under the lexicographic order on terms with x 1 -< x 2 -< ... -< Xn. Then, 

In Q[xt, ... , x;] = (G n Q[x1, ... , x;])Q[xt, ... , x;] 

for each i = 1, 2, ... , n. 

Here, by (GnQ[xt, ... , x;])Q[xt, ... , x;], we mean the ideal generated by (GnQ[xt, ... , x;]) 
in the ring Q[x1, ... , x;], i.e. 

(GnQ[xt, ... , x;])Q[xt, ... , x;] = {L9ihi I Ui E (GnQ[xl, ... , x;]), hiE Q[xl, ... , x;]}. 



66 D. Kapur and Y.N. Lakshman 

Example: Let F = {/1, /2,/3} where 

= x~- 6 x1x~ + 13 x~xi- 12 x3xi + 4 x1, 

X~- 2 X2X1 - 2 X2X3 +xi+ 2 X1X3 +X~, 
xi+ 4xd~ 3, 

33223 3 4 X1X3 - x3x1 + X3Xl - X1 
+X~- 3 X~Xl + 3 X3Xi- xi+ X1X3- 2 xi+ 3 X3- 6 X1 

Let G denote the reduced Grobner basis for (F) under the lexicographic ordering with 
x1 -< x2 -< x3. We have 

where 

and, 

91 

92,1 
' 92,2 

93,1 

93,2 

93,3 

= 

xi+ 4xl + 3, 

X1X~ + 3 X~+ 9 X1 + 27 + 6 X2X1 + 18 X2 1 

2 X~+ 36 X~ - 27 X2X1 + 135 X2 - 108 Xl + 108, 

X1X3 + 2 X1 + 3 X3 + 6, 

4 X2X3 + 24 X3 - 2 X~ + 4 X2X1 + 15 X1 + 45, 

2x~ + 12x3- x1 + 15, 

I1 = (91)Q[x!], I2 = (91, 92,1. 92,2)Q[xl, x2], I3 = ( G)Q[x1, x2, x3]',= I. 
[,<!;,'' ,.: ' 

In principle, any system of polynomial equations can be solved using q.:lexicographic 
Grobner basis for the ideal generated by the given polynomials by the algo~ithm outlined 
above. The fact that Grobner bases under lexicographic term orderings exhibit separation 
of variables is useful in many situations. In geometric modeling, this property has been 
used 

• to compute intersections of curves and surfaces, 
• to find an implicit equation for a curve or surface given parametrically, and 
• to determine whether a given rational parameterization of a curve or surface is 

faithful. 

For further details and illustrations of the above applications, we refer the reader to 
Manocha and Canny (1990), Hoffman (1989, 1990) and Hoffman and Vermeer (1991). 

If a set of polynomials does not have a common zero, i.e. its ideal is the whole ring, 
then it is easy to see that a Grobner basis of such a set of polynomials includes 1 no 
matter what term ordering is used. Grobner basis computations can thus be used to 
check for the consistency of a system of nonlinear polynomial equations. 

THEOREM 3.3. A set of polynomials in Q[x1, · · ·, Xn] has no common zero in C if and 
only if their reduced Grabner basis with respect to any admissible term ordering is {1}. 

A refutational method based on this result is proposed for automatically proving ge
ometry theorems in Kapur (1986, 1988). A refutational approach using Grobner basis 
computations for propositional calculus as well as for first-order predicate calculus is 
discussed in Kapur and Narendran (1985). 
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3.3. GROBNER BASES IN PRACTICE 

In general, Grobner bases are hard to compute. That it is inherently so was shown 
by Mayr and Meyer (1982) whose result can be used to exhibit ideals for which dou
bly exponential degree explosions during Grobner basis computations are inevitable. In 
addition, the coefficients of polynomials that get generated during Grobner bases com
putations can get extremely large. Another problem can arise due to the choice of the 
term ordering used in a Grobner basis computation. We have seen that lexicographic 
bases or those similar to lexicographic bases are the most useful. However, in practice, 
lexicographic bases are known to be the hardest to compute. 

Despite these difficulties, highly non-trivial Grobner bases computations have been 
performed. Computations with ideals in polynomial rings over the rational numbers with 
8-10 variables with degrees of polynomials in the initial basis about 5 are feasible. If 
the coefficients belong to a finite field (typically Zp where p is a word sized prime), 
much larger computations are possible. Macaulay (Bayer and Stillman; 1989) and CoCoA 
(Giovini and Niesi, 1990) are specialized computer algebra systems built for performing 
large computations in algebraic geometry and commutative algebra; they are quite easy 
to use and provide a variety of built-in functions for computing with Grobner bases. 
Most general computer algebra systems (such as MAPLE, MACSYMA, MATHEMAT
ICA, REDUCE) also provide the basic Grobner basis functions. An implementation of 
Grobner basis algorithm also exists in GeoMeter (Cyrluk et al., 1988; Connolly et al., 
1989), a prog~amming environment for geometric modeling and algebraic reasoning. This 
implementation has been used for proving nontrivial plane geometry theorems using a 
refutational approach discussed in Kapur (1988). 

Most Grob~er basis implementations use several modifications to Buchberger's algo
rithm in order to speed up the computations. We now briefly describe some of the common 
improvements. 

Recall that in Buchberger's algorithm, one computes a normal form of an s-polynomial 
with respect to the current basis and, if it is non-zero, augments the c.urrent basis with 
the normal form. The s-polynomial reductions are repeated until all s-polynomials have 
normal form zero. An s-polynomial reduction is said to be useless if it does not produce 
a new polynomial to augment the current basis with (i.e. a reduction that produces 
a zero normal form). It has been observed that a lot of time is spent in performing 
useless reductions and one would like to avoid as many useless reductions as possible. 
In order to facilitate this, Buchberger proposed some simple conditions for predicting 
useless reductions. Since then, several researchers have invented variations and extensions 
to Buchberger's criteria. We only present Buchberger's criteria. 

• If the head terms of 9; and 9j are co-prime, then s-polynomial of 91 , 92 can be 
reduced to zero by the current basis. Hence, there is no need to perform the reduc
tion. 

• If 9, 91.92 are such that head(9) divides lcm(head(91), head(92)) and reductions of 
s-poly(g,g1) and s-poly(g,g2) are already done, then it is not necessary to perform 
the reduction of s-poly(g1, 92)· 

The implementation of these criteria for predicting useless reductions along with the so
called normal selection strategy ( ~ach time, the s-polynomial of the pair 9i, Yi for which 
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lcm(head(g1), head(g2 )) is the smallest among all the untried pairs in the current basis) is 
known to improve the running time of Buchberger's algorithm significantly. For complete 
details, we refer the reader to Gebauer and Moller (1988) and Giovini et a/. (1991). 

3.4. ZERO DIMENSIONAL IDEALS AND BASIS CONVERSION 

We mentioned earlier the sensitivity of Grabner basis computations to the term order
ing being used. It is observed in practice that lexicographically ordered Grabner bases 
(and lexicographic-like ordered bases, namely, the block ordered bases) are much harder 
to compute than the total degree ordered bases. However, for a number of applications, 
as we have already seen, one needs to compute a Grabner basis under a lexicographic or 
lexicographic-like ordering. This raises the following question: 

• Suppose we are given the reduced Grabner basis G1 for an ideal I under a degree 
ordering, can one compute the reduced Grabner basis for I under a lexicographic 
ordering much faster than by a direct computation using Buchberger's algorithm on 
G1? 

Faugere et al. (1989) provided an elegant answer to this question for a special class of 
ideals called zero-dimensional ideals. 

Recall that an ideal I E Q(xl, x 2, ... , xn] is said to be zero-dimension'al if Zero( I) is 
finite. In other words, there are only finitely many common zeros of the polynomials in 
I. The following property of Grabner bases, observed first by Buchbergeti'fharacterizes 
0-dimensional ideals: · '; . · · 

THEOREM 3.4. Let G be the reduced Grabner basis for an ideal I E Q(xt, x 2, ... , xn] 
under any admissible term ordering. I is zero-dimensional iff, for each i, 1 ~ i ~ n, G 
contains a polynomial whose head term is a pure power of x;, i.e. of the form xf; for 
some integer d;. 

A term t is said to be reduced with respect to G if t is not divisible by the head term of 
any polynomial in G. The condition just mentioned amounts to saying that the number 
of terms reduced with respect toG is finite iff the ideal I is zero dimensional. The number 
of terms reduced with respect toG is an important invariant (we denote it by D) of the 
ideal I. It is the same as the cardinality of Zero(I) or the number of common zeros, 
counted with multiplicities. The algorithm of Faugere, Gianni, Lazard and Mora does the 
following: 

• Given a Grabner basis G1 for a zero-dimensional ideal I under some term ordering 
-<1, compute a reduced Grabner basis G2 for I under a second term ordering -<2 . 

The original intent of Faugere et al. (1989) was to find all the common zeros of I quickly. 
Their algorithm, which we refer to as the basis conversion algorithm, is typically used as 
follows for solving zero-dimensional systems of equations: 

• Compute a Grabner basis G1 for the ideal generated by the given system of poly
nomials under a total degree ordering -< 1 . 

• Use the basis conversion algorithm to obtain a Grabner basis G2 under a lexico
graphic ordering -<2. 
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• Apply the back substitution phase (described earlier) on G2 to obtain the common 
zeros. 

The authors report spectacular success for this approach on several bench-mark systems 
of equations including cases where a direct computation of a lexicographic basis had 
never been carried out (usually the machine would run out of space on these examples!). 
Since then, variations of this technique have been developed to solve several problems 
related to zero-dimensional ideals (Lakshman, 1990). 

The basis conversion algorithm enumerates terms starting from 1, in the increasing 
order with respect to the second (new) term ordering -<2 • As it considers a term t, it 
classifies t as one of the following using the Grobner basis G1. 

• tis reduced with respect to G2 , or 
• t is a lead term of some polynomial in G2 , or 
• t is a multiple of some lead term with respect to G2 • 

Note that G2 is the desired basis and hence the above classification is non-trivial. In fact, 
this classification is what leads to the construction of G2. The complete description of 
the basis conversion algorithm follows: 

• Let N:F(t) denote the normal form of the term t with respect to G1 . 

• Newbasis: Grobner basis being built. 
• ReducedTerm: Set of monomials that are known to be reduced with respect to New

basis; Irii tialized to { 1} . 
• NextTe~m: Function that returns the smallest monomial (under the desired admis

sible term ordering) that is neither in ReducedTerm nor is a multiple of some lead 
term in Newbasis. Returns false if no such monomial exists. 

ReducedTerm:= {1}; 
Newbasis:= { }; 
while (t := NextTerm()) do 

If there exist t 1 , ... , t, in ReducedTerm, and Aj E Q 
such that N:F(t) + LJ=l >.jN:F(tj) = 0, then, 

Newbasis := Newbasis U {t + LJ=l >.jtj} 
else 

ReducedTerm := ReducedTerm U {t}; 
Save N:F(t); 

fi 
od end; 

Example: Consider the ideal I = (!,g) where f = x3 - y2 , g = (y- 1)2 + 2x2 - 2. 
The basis G = {/! = y2 - 2y - 1 - 2x2, 12 = x 3 + 2x2 - 2y - 1} is the reduced Grobner 
basis for I under the degree ordering with x -< y. Note that under this ordering, x 3 is 
the head term of 12 and y2 is the head term of /1. Indeed, I is a zero-dimensional ideal 
since G has a polynomial whose lead term is a pure power of x and one whose lead term 
is a pure power of y (we have already seen that there are only finitely many common 
zeros of I). Suppose we wish to compute the reduced Grobner basis G2 for I under the 
lexicographic term order withy -<1 x. We proceed thus: 

We begin by looking at the term y (the smallest term under -<1 that is not yet classified). 
At this point, we only know that the term 1 is reduced with respect to G2 • We note that 
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N:F(y) = y. Our attempt to find a rational constant At such that 

N:F(y) + At(N:F(1)) = o 
ends in failure. We therefore conclude that y is reduced with respect to G2 and consider 
y2. We find that N:F(y2) = 2y + 1 - 2x2 and this time, we look for rational constants 
At, A2 such that 

Since rational constants At, A2 satisfying the above relation do not exist, we conclude 
that y2 is also reduced with respect to G2 • We then consider y3,y4,y5 (all of which fail 
to produce a linear relation of the type ( iv)) and finally, y 6

• At this point, we are looking 
for rational constants At, A2, A4, >.4, >.s, A6 such that 

N:F(y6) + A6(N:F(y5
)) + As(N:F(y4)) + A4(N:F(y3)) 

+A3(N:F(y2)) + >.2(N:F(y)) + At(N:F(1)) = o. 
Substituting th~ appropriate normal forms, we have 

(72yx2+ 176xy- 570y- 259 + 506x2 + 76x) 

+ A6( -12yx2 + 52xy- 107y- 52+ 96x2 + 24x) 

+ A5 ( -4y - 8yx2 - 3 + 4x2 + 8xy + 4x) 
+ A4(5y- 2yx2 + 2- 4x2) 

+ A3(2y + 1 - 2x2) 

+ A2(y) 

+ At(1) = 0. 

Equating the coefficients of like terms, we have 

-12A6- 8As- 2>.4 + 72 = 0, 

52A6 + S>.s + 176 = 0, 

96A6 + 4As - 4A4- 2>.3 + 506 = 0, 

-107A6- 4>.s + 5>.4 + 2>.3 + >.2 = 0, 

24A6 + 4>.s + 76 = 0, 

-52>.6 - 3As + 2>.4 + A3 + At = 0, 

{ coeff. of yx2
} 

{coeff. of xy} 

{ coeff. of x2
} 

{ coeff. of y} 
{ coeff. of x} 

{constant term} 

This is a system of linear equations in the variables >.; and can be solved easily. The 
unique solution is 

A6 = -6, As= 17, A4 = 4, A3 = -9, A2 = -6, At= -1 

(the uniqueness of the solution can be deduced from the uniqueness of the reduced 
Grabner basis for 'I with respect to the term order ~1). Therefore, we classify y6 as a 
head term with respect to G2 and add the polynomial 

- y6 
- 6y5 + 17 y4 + 4y3 

- 9y2 
- 6y - 1 

to the basis G2. The next term that is considered by the algorithm is x (at this point, 
x is the smallest unexamined term according to ~1 that is not a multiple of any term 
known to be a lead term with respect to G2). We now look for a linear relation among 
N:F(x),N:F(y5 ),N:F(y4),N:F(y3),N:F(y2),N:F(y) and 1. Such a relation exists and we 
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find that 

X+ 1/4(2y5
- 1Qy2- 13y4 + 4Qy3- 18y- 5) 

to be the polynomial resulting from the linear relation. Therefore, we add it to the basis 
G2 • We now know two lead terms in G2 , namely, y6 , x. The next term that we examine 
must not be divisible by either y 6 or x. But we have already examined all such terms 
and classified them. Hence, the algorithm terminates, and we have the basis 

G2 = {x+ 1/4(2y5 -10y2 -13y4+40y3 -18y-5), y6
- 6y5 + 17y4 +4y3 -9y2 -6y-1}. 

Note that the Ai are determined by solving a linear system of equations. For the purposes 
of illustration, we wrote down a complete linear system. The linear systems of equations 
that arise in this algorithm have a nice structure (a consequence of the way they are 
generated) and in practice, one takes advantage of the structure to find the Ai efficiently. 
It is shown in Faugere et a/. (1989) that the number of rational arithmetic operations 
performed by the basis conversion algorithm is O(n2 D3 +n2 D 2 log(nD)) (recall that Dis 
the number of reduced terms with respect to G1; n is the number of variables). In order 
to achieve the above bound for the running time of the algorithm, it is necessary to save 
all the normal forms of the terms computed by the algorithm (in the step save N:F(t)). 

The termination of the basis conversion algorithm follows from the property that zero
dimensional ideals have only finitely many terms that are in normal form with respect 
to its Grabner basis constructed using an admissible ordering. The fact that the basis 
generated frqin the above construction is a Grabner basis is a corollary of the following 
property of~,~rabner bases. 

DEFINITI0~,,·3.3. Given a basis F, and a term order-<, define init-<.(F) to be the set 
of all head terms of the polynomials in F. For an ideal I, define the initial ideal with 
respect to -< t'o be the ideal generated by the set init-<. (1'). 

It can be shown that a basis G of an ideal I is a Grabner basis with respect to -< if 
and only if the initial ideal of I with respect to -< is generated by the head terms of the 
polynomials in the basis G. The basis conversion algorithm has been used for computing 
the implicit equation of a parametrically given surface (see Hoffman, ~989). 

3.5. TRIANGULAR SETS 

We have seen earlier how lexicographic Grabner bases can be used to solve systems 
of polynomial equations. A Grabner basis contains all the information about the zeros 
of the ideal it generates, including multiplicities (this fact is essential when one wants 
to compute the primary decomposition of an ideal; see Lakshman, 1990, for instance). 
However, if one is interested merely in the location of the zeros of an ideal (let us assume 
for the moment that we are dealing with zero dimensional ideals), then the multiplicities 
can slow down the computation of the coordinates of the zeros of the ideal. It is possible 
to obtain sets of polynomials in which all the variables are separated as in a lexicographic 
Grabner basis but the sets are much simpler than a lexicographic Grabner basis. 

Kandri-Rody (1984) showed how to construct such a set from a lexicographic Grabner 
basis and called it an extracted characteristic set following Ritt. Extracted characteris
tic sets were used by Kandri-Rody for testing the primality of an ideal as well as for 
computing the dimension of an ideal. Lazard (1989a, 1989b) also defined triangular sets 
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for studying zero sets ideals. In the rest of this section, we describe Lazard's triangular 
sets for zero dimensional ideals and present an algorithm due to Lazard for computing 
triangular sets from a lexicographic Grobner basis. 

A triangular set is any set of polynomials 

/1,/2, ... ,/n E Q[xt,X2, ... ,xn] 

such that 

/1 E Q[xl], f2 E Q[xt, x2], /3 E Q[xl, x2, xa], ... , fn E Q[xt, x2, ... , Xn]· 

The highest variable under the ordering x1 -< x 2 -< ... -< Xn appearing in a polynomial f 
is called the main variable of f. By deg(f;), we mean the degree of/; in its main variable 
x;, and, by degj(f;), we mean the degree of/; in Xj. The triangular set is called reduced 
if degj(f;) < deg(/j) for all j < i ~ n. In this subsection, by a triangular set, we mean 
a reduced triangular set in which every polynomial is monic in its main variable, i.e. its 
initial is 1. It can be shown that the zero set of every .zero-dimensional ideal I is the 
union of the zer.o-sets of finitely many distinct triangular sets. We say that two sets of 
polynomials are equivalent if they have the same zero set. 

Example: Consider the ideal I given by the basis G below. In fact, G is the reduced 
Grobner basis for I under the pure lexicographic ordering with x -< y -< z. 

G = {U6 4z2 + 4xz + 13x3 
- 88x2 + 173x- 94, 

U5 = yz- y- z + 1, 

x2z- x2 - 3xz + 3x + 2z- 2, " U4 
Ya y2 -1, 

U2 yx2 - 6yx + 9y- x2 + 6x- 9, 

U1 x4 - 9x3 + 29x2 - 39x + 18} 

Given below is one possible triangular set decomposition of the zero set of I, 

{(x2 - 3x + 2, y- 1, z2 + xz + 1), (x2 - 6x + 9, y2 - 1, z- 1)} 

whose structure is simpler than that of the Grobner basis G. 

We now sketch Lazard's algorithm for computing a triangular set decomposition of a 
zero set informally using the above example. In a reduced lexicographic Grobner basis 
of a zero dimensional ideal, there is always a single polynomial in the lowest variable; 
this polynomial goes into a triangular set. However, there can be many polynomials in 
the other variables. For the above example, there are two polynomials, g2, g3 , in x, y 
and there are three polynomials, g4, g5, U6, in x, y, z. We attempt to make the smallest 
polynomial in x, y, i.e. g2 , monic. When considered as a polynomial in y, it has x2- 6x+9 
as the leading coefficient. We attempt to compute the inverse of x 2 - 6x + 9 modulo the 
polynomial Ul, i.e. try to compute a polynomial h such that 

(x2 
- 6x + 9)h = 1 (mod Yl)· 

But Yl = x4 
- 9x3 + 29x2 - 39x + 18 = (x 2 - 6x + 9)(x2 - 3x + 2), implying that 

x2 - 6x + 9 cannot be inverted modulo g1 . Therefore, we try to split the triangular 
set constructed thus far into two triangular sets: T(l) containing x2 - 6x + 9 and T(2) 
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containing the x 2 - 3x + 2. For each triangular set, we repeat the above operation of 
making the remaining polynomials in the Grabner basis monic. 

With respect to r(l), the second polynomial g2 = yx2 - 6yx + 9y- x 2 + 6x- 9 in 
the Grabner basis simplifies to 0. The third polynomial g3 is already monic, so it is 
added to 7'<1). Consider g4 , the smallest polynomial in x, y, z, whose leading coefficient is 
x2 - 3x + 2. We attempt to invert it with respect to T(l); using the extended Euclidean 
algorithm, as discussed below, its inverse with respect to x2 .,... 6x + 9 is -3j4x + 11/4, 
I.e. 

(x 2
- 3x + 2)( -3/4x + 11/4) = 1 mod x 2 

- 6x + 9. 

When we multiply g4 by -3/4x + 11/4 and simplify by T(l), we get z-1, which is added 
to T(1); we have now completed the computation of one triangular set. It is easy to see 
that us and U6 simplify to 0 with respect to T(l). 

The computation of the second triangular set T(2) containing x 2 - 3x + 2 is done in the 
same way. The inverse of the leading coefficient of U2 can be computed with respect to 
T(2) using which g2 is made monic, and y - 1 is added to T(2). Polynomial g3 simplifies 
to 0 using T( 2). Polynomials g4 , g5 also simplify to 0 using T(2). Simplifying U6 gives 
z2 + xz + 1 which is added to T(2 ). 

As the reader might have noticed, two operations are needed with respect to a trian
gular set: simplification/reduction and inversion. They are discussed next. 

·"-.·.b] 
; .~{,3.5.1. REDUCTION WITH RESPECT TO A TRIANGULAR SET 

Given a triangular set T = {!1, /2, ... , In} with Xi being the main variable in fi 
and a polynomial I E Q[x1, ... , Xn]. Let di be the degree of li in its main variable Xi. 
The remainder of I with respect to T is defined as follows. We divide I by In with a 
remainder, i.e. 

' 
where Qn is the quotient, and rn is the remainder. The degree of rn in Xn is less than the 
degree of In in Xn. We can now divide rn by ln-1 treating them both as a polynomials 
in Xn-1· The coefficients of ln-1 are polynomials in x1, ... , Xn-2 and the coefficients of 
rn are polynomials in x1, ... , Xn-2, Xn, i.e. we have 

rn = Qn-1ln-1 + rn-1 

where the degree of the remainder rn-1 in Xn < dn and its degree in Xn-1 < dn-1· We 
can compute successive remainders rn-2, ... , r1 with respect to ln-2, ... , ft. The last 
remainder r1 is such that degi(rt) < di for 1 ~ i ~ n and it is called the remainder of I 
with respect to T. The process of obtaining r1 from I and T is called reducing I by T. 

Example: Let I = z2 + y2 + x2 • Its remainder with respect to the triangular set (x2 -

3x + 2, y- 1, z2 + xz + 1) with x -< y-< z is computed as follows: 

the remainder of I using (z2 + xz + 1) 

the remainder of (x2 + y2
- xz- 1) using (y- 1) 

the remainder of (x2
- xz) using (x2 - 3x + 2) -xz + 3x- 2 
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The polynomial -xz + 3x - 2 is the remainder off with respect to the triangular set. 
Notice that the reduction of a polynomial f with respect to a triangular set T is the 
same as computing the normal form off with respect toT (which also happens to be a 
reduced Grobner basis). 

3.5.2. INVERSION WITH RESPECT TO A TRIANGULAR SET 

Let T = {ft, h, ... , fn} be a triangular set with x; being the main variable of k 
Without any loss of generality, we can assume that f is already reduced with respect 
to T (iff is not already reduced with respect to T, reduce it using T). By inverting a 
polynomial f with respect to T, we mean finding a polynomial g such that the remainder 
of gf with respect to T is 1. Not every polynomial has an inverse with respect to a 
triangular set T. In case f does not have an inverse with respect to T, the process of 
trying to invert f may lead to a splitting ofT. Let x; be the highest variable appearing in 
f. Treating f and/; as polynomials with coefficients that are polynomials in x1, ... , Xi-1, 
i.e./,/; E Q[x1; ... , Xi-1][x;], compute their greatest common divisor using the extended 
Euclidean algorithm (see Knuth, 1980, pp. 407-408). The crucial point here is that we 
proceed as though the leading coefficients of the remainders that appear in performing 
Euclid's algorithm on f and /; are invertible in T. Let g be their gcd. We have 

g = fp + f;q 

where p, q are the multipliers produced by the extended Euclidean algorithm. There are 
three possibilities: 

• if g = 1, then pis the inverse off with respect toT; 
• if g = /;, then /; divides f and f is not invertible with respect to T. 
• if /; f. g f. 1, then /; has factors g, fd g and the triangular set T is now equivalent 

to the union of the two triangular sets 

T(l) = {/t,/2, ... ,g,/i+1····.fn}, and, T(2
) = {/t,/2, ... ,/;jg,/i+l, ... ,/n}. 

f is not invertible with respect to T(1) and the inverse off with respect to T( 2 ) is 
given by g- 1 p where g- 1 denotes the inverse of g with respect to T(2 ). 

The crucial point is that the triangular set T can split at lower levels. This is because 
the extended Euclidean algorithm used to compute the gcd of /, /; needs to compute 
inverses of polynomials with respect to /j, j < i, which is done recursively. 

To summarize, the operation of inverting a polynomial f with respect to a triangular 
set T produces a family of triangular sets T(l), T(2), ••• , T(k) and polynomials h1, ... , hk 

such that 

• T is equivalent to the union of the triangular sets T(l), T(2), •.• , T(k). 
• if h; f. 0, then h; is the inverse off with respect to T(i), i.e. the remainder of fh; 

with respect toT(!) is 1; if h; = 0, then f is not invertible with respect to T(i). 

What we have sketched here is, in essence, the D5 method of Duval for handling algebraic 
numbers. We illustrate the operation of inversion with respect to a triangular set below. 
For complete details on the D5 technique, we refer the reader to Duval (1991). 
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Example: Let us invert the polynomial f = (x- 1)z + 1 with respect to the triangular 
set T = (x2 - 3x + 2, y- 1, z2 + xz + 1) of the previous example with the ordering 
X-< y-< Z. 

The first step is to compute the gcd of/, z2 + xz + 1, treating them as polynomials in 
z. At this point, we are required to invert x -1 (the leading coefficient of f) with respect 
toT. Since x- 1 is independent of y, z, we try to compute the gcd of x2 - 3x + 2, x- 1 
treating them as polynomials in x; we find that x- 1 is their gcd. This leads to a split 
ofT into r<l) = (x- 1, y- 1, z2 + xz + 1) and T(2) = (x- 2, y- 1, z2 + xz + 1). The 
polynomial x - 1 is not invertible with respect to T(l); it has an inverse with respect 
to T(2), which is 1 (since (x -1).1 = 1 mod (x- 2)). T(l),T(2) can be reduced to give 
T(1) = (x -1,y-1,z2 + z + 1) and T(1) = (x -1,y-1, z2 + 2z+ 1). Note that we may 
have to reduce the triangular sets as we propagate the split upwards. 

Our task now is to invert f with respect to T(l) and T(2 ) separately. The polynomial 
f has remainder 1 with respect to T(l) and 1 is its own inverse; f has remainder z + 1 
with respect to T(2). We find that the gcd of z + 1, z2 + 2z + 1 is z + 1. Therefore, f is 
not invertible with respect to T(2). 

3.5.3. LAZARD'S ALGORITHM FOR COMPUTING A FAMILY OF TRIANGULAR SETS 

The algo*·hm that we present is called D5Lextriangular in Lazard (1989a). It uses 
the D5 ine{b,od to compute a triangular set decomposition of the zero set of a zero 
dimensional ·iaeal given a lexicographic Grabner basis for the ideal. We would like to 
point out that there are algorithms for computing triangular sets that do not need a 
lexicographic Grabner basis for input. We refer the interested reader to Lazard (1989a) 
and Lakshman (1990a). 

Algorithm D5Lextriangular 

Input: A reduced Grabner basis G for a zero dimensional ideal I under the lexico
graphic ordering with x1 -< x 2 -< ... -< Xn; it is assumed that G is presented as a 
list with the head terms of the polynomials sorted in increasing order under -< . 

Output: A list of triangular sets equivalent to G. 
Functions used: 

Reduce(!, T): reduces the polynomial modulo the triangular set T. 
Inverse(!, TL): f is a polynomial and TL is a list of triangular sets U1, ... , Ur (the list 

can be empty). The function returns a list of pairs, [(h1, Tt), ... , (hk, n)], k 2: 1, 
such that the union of the triangular sets in T L is equivalent to the union of 
triangular sets T1, ... , Tk; if hi f. 0, then, hi is the inverse off modulo Ti, else f is 
not invertible modulo Ti. 

lcoeff(f, x ): returns the leading coefficient of f treated as a univariate polynomial in 
the variable x. ' 

TL :=[[first( G)]];% start with the univariate polynomial in G. 
for i from 2 to n do 

H :=sublist of polynomials in G that depend on Xi 

but not on Xi+!, •.. , Xn. repeat 
f :=first( H); 
H := rest(H); 
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od; 

g := Lcoeff(/, Xi); 

L := lnverse(g, TL); 
TL := 0; 
for each pair (hi, Tj) in L 

if (hi -=/: 0) then 
add Reduce(! hi, Tj) to Tj; 
append Tj to the list TL; 

fi od; 
until H is empty; 

return(TL); 

The above algorithm can be further optimized as follows: 

• In the inner for-loop, if a Tj E T L already contains a polynomial that depends on 
Xi (for the current i), then, it is not necessary to perform the body of the for-loop 
for that Tj as Reduce(! hi, Tj) will turn out to be zero. 

We illustrate the algorithm and the optimization using the previous example. For y, H 
includes two polynomials, 92 and 93; Inverse is invoked on the initial of 92 with respect 
to 91· This leads to a split of the triangular set consisting of g1 giving two triangular sets 
T(1) = {x2 - 6x + 9} and T(2) = {x2 - 3x + 2}. and h1 = 0 and h2 = -3/4x + 11/4. 
At the end of the first iteration of the second inner loop, T( 1) = {x2-- 6x + 9} and 
T(2) = {x2 -3x+2, y-1}. Now, 93 reduces to 0 using T(2). The inverse of the initial of g3 
is computed with respect to T(1) (since the initial is 1, the inverse is also 1J which results 
in the second element y2 - 1 added to T(l). Similarly, for z there are thi.iie polynomials 
94, 95,96 in ascending order. The inverse of the initial of 94 is computed l\V'ith respect to 
T(1) as well as T(2). Using T( 1), the inverse is -3/4x + 11/4 which is multiplied with 94 

to give z - 1 and that is added to T(l). For T(2), the inverse of the initial of g4 does not 
exist. Polynomials 95 and 96 reduce to 0 using T(l). The inverse ~f the initial of g5 does 
not exist with respect to T(2) either, but the inverse of the initial of g6 with respect to 
T(2) can be computed thus giving the third element z2 + xz + 1 for T(2). This gives the 
decomposition in terms of triangular sets. 

The correctness of the algorithm is based on a theorem due to Gianni and Kalkbren
ner (see Lazard, 1989a; Gianni, 1987; Kalkbrenner, 1987). These ideas are extended to 
positive dimensional ideals in Lazard (1989b ). 

4. Characteristic Set Construction 

In this section, we discuss Ritt's characteristic set construction. The discussion is based 
on Ritt's presentation in his book Differential Algebra (Ritt, 1950, Chapter 4) and Wu's 
exposition of Ritt's approach as discussed in Wu (1986a). We first give an informal 
explanation of Ritt's characteristic set method and then give the technical details. For 
many applications of the characteristic set construction, the reader can consult Wu (1984, 
1986a, 1986b), Chou (1988), Chou and Gao (1990a, 1990b, 1990c, 1990d), Kapur and 
Mundy (1988) and Kapur and Wan (1990). 

Given a system S of polynomial equations, the characteristic set algorithm transforms 
S into a triangular form S' so that the zero set of S is "roughly equivalent" to the zero 
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set of S'. A total ordering on variables is assumed. Unlike in Grobner basis computations, 
polynomials are treated as univariate polynomials in their highest variable. The primitive 
operation used in the transformation is that of pseudo-division of a polynomial by another 
polynomial. The algorithm is similar in flavor to Gaussian elimination for linear equations 
and computing a lexicographic Grobner basis. -

If the number of equations in S is less than n, the number of variables, then the 
variable set {xl> · · ·, Xn} is typically classified into two- subsets: independent variables 
(also called parameters) and dependent variables, and a total ordering on the variables is 
so chosen that the dependent variables are all higher in the ordering than the independent 
variables. We denote the independent variables by u1, · · ·, Uk and dependent variables by 
Yl, · · ·, y,, and the total ordering is u1 -< ... -< Uk -< Yl -< ... -< y,, where k + I = 
n. Choosing independent variables and defining an ordering on dependent variables is 
similar to choosing an ordering on variables for defining a lexicographic term ordering 
for computing a Grobner basis. 

To check whether an equation f = 0 follows from S, f is pseudo-divided using the 
polynomials in a triangular formS' of S. If the remainder of pseudo-division is 0, then 
f = 0 is said to follow from S under the condition that the initials of polynomials in S' 
are not zero. We discuss later why this condition on the initials is needed. 

4.1. RITT-WU's THEOREM 

·,,'!<, 
First, we ·f'brmally define concepts used above in the characteristic set construction. 

Then, we give the definition of a characteristic set and the main theorem about charac
teristic sets. , 

Given a polynomial p, the highest variable of pis y; if p E Q[u1, ... , uk, Yl, ... , Yi] and 
p ¢ Q[ut, ... ,uk,Yl,····Yi-1] (there is a similar definition for Ui)· The class of pis then 
called i. 

A polynomial p is ;:::: another polynomial q if and only if 

1. the highest variable of p, say Yi, is >- the highest variable of q, say Yi, i.e. the class of 
p is higher than the class of q, or 

2. the class of p = the class of q, and the degree of pin Yi is ;:::: the degree of q in Yi· 

If p;:::: q and q ;:::: p, then p and q are said to be equivalent, written asp~ q; this means 
that p and q are of the same class i, and the degree of Yi in p is the same as the degree 
of y; in q. 

A polynomial p is reduced with respect to another polynomial q if 

(a) the highest variable, say Yi, of pis-< the highest variable of q, say Yi (i.e. p-< q), or 

(b) Yi >- Yi and the degree of the Yi in q is > the degree of Yi in p. t 
If pis not reduced with respect to q, then p reduces tor using q by pseudo-dividing p by 
q giving r as the remainder of the result of pseudo-division. 

A list C of polynomials, (Pl, · · ·, Pm) is called a chain if either 

t As we shall see later, this definition of reduction will be weakened in order to improve the efficiency 
of various algorithms for computing a characteristic set. 

'I 
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(i) m = 1 and P1 "I 0, or 
(ii) m > 1 and the class of P1 is > 0, and for j > i, Pi is of higher class than Pi and 

reduced with respect top;; we thus have P1 -< P2 -< ... -< Pm· (Wu, 1986a). 

(A chain is the same as an ascending set defined by Wu.) 

A polynomial p reduces to p1 with respect to a chain C = {Pt, · · · ,Pm} if there exist 
nonnegative integers i1, · · ·, im such that 

fti 1 
• • ·1m imp= q1P1 + '' '+ qmPm + P1 

whfre p1 is reduced with respect to each of Pi, 1 ~ i ~ m. Typically pseudo-division is 
successively done using Pi's starting with Pm, the polynomial in the highest variable. 

Given two chains C = {p1, .. · ,pm} and C' = {p~, .. · ,p~,), C >- C' if (i) there is a 
j ~ m as well as j ~ m1 such that Pi ~ p~ for all i < j and Pv>- pj, or (ii) m' > m and 
for i ~ m, Pi ~ p~. 

As stated earlier, a set G = {g1, · · · , gm} of polynomials is said to be in triangu
lar form if and' only if g1, g2, · · · , gm are, respectively, polynomials in { u1, · · ·, Uk, Y1}, 
{u1,"',uk,Y1,Y2}, ... , {ut,"·,uk,Yl, ... ,ym}· If m =I, then G is said to be fully 
triangular. It is easy to see that every chain is in triangular form. 

4.1.1. CHARACTERISTIC SET 

Ritt was apparently interested in associating characteristic sets only with prime ideals. 
A prime ideal is an ideal with the property that if an element h of the idealt~il:n l;>e factored 
ash = h1h2, then, either h1 or h2 must be in the ideal. For a prime ideaUt', Ritt defined 
a subset of E that forms the lowest chain to be a characteristic set of E. In chapter 4 in 
the section Components of Finite Systems of his book Differential Algebra (Ritt, 1950, 
p. 95), Ritt describes an algorithm for computing characteristic sets for all the minimal 
prime ideals containing an ideal 'I, given a basis for 'I. 

Wu (1986a) altered Ritt's notation somewhat to make it more useful. Wu associated 
a characteristic set with the zero set of an arbitrary set of polynomials. He called a 
characteristic set associated with a prime ideal (equivalently, an irreducible zero set) 
as irreducible. A zero set is irreducible if it cannot be expressed as a union of proper 
algebraic subsets. t 

A characteristic set {91, · · · , 91} as defined by Wu could be irreducible or reducible, 
whereas a characteristic set defined by Ritt is always irreducible. It is interesting to 
note that in his first paper on geometry theorem-proving (Wu, 1984), Wu defined a 
characteristic set to be a _triangular set in which for i = 1 to I, 

1 the initial of 9i is a polynomial in the parameters only, and 
2 gi is irreducible over Qi-1 where Qo = Q(u1, .. ·, uk) and Qj = Qj-1(o:j) is an 

algebraic extension of Qj-1 obtained by adjoining a root O:j of 9i = 0 to Qj-1! i.e. 
9i(o:J) = 0 in Qi for 1 ~ j < i. 

Wu called such a triangular set as a privileged basis associated with a prime ideal. He 

t Recall that a zero set is algebraic if it is the zero set of a set of a polynomials. 
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credited this definition to Grobner 's book on algebraic geometry (Grobner , 1949), where 
it is called a prime basis, and to Ritt for "his intimately related concept of a characteristic 
set" (see Wu, 1984, p. 219). In his subsequent papers, Wu relaxed this requirement 
on initials on pragmatic grounds, and required a polynomial in a characteristic set to 
be reduced with respect to other polynomials. In the sequel, we have followed Wu's 
definitions as they seem to be more useful. 

Wu (1986a) attributes the following definition and theorem to Ritt. 

DEFINITION 4.1. Given a finite set E of polynomials in Ut, ..• , Uk, Yl, ... , y,, a character
istic set ci> of E is defined to be either 

• {pi}, where Pl is a polynomial in u1, ... , Uk, or 
• a chain {Pt, ... ,p,), where Pl is a polynomial in Yl, Ut, ... , Uk with initial It, P2 is a 

polynomial in Y2, Yb u1, ... , Uk, with initial I2, ... ,PI is a polynomial in y,, .•• , Yl, u1, ... , Uk 

with initial I,, such that 
o any zero of E is a zero of ci>, and 
o any zero of ci> that is not a zero of any of the initials Ii, is a zero of E. 

THEOREM 4.1. (RITT) Given a finite set E of polynomials in y,, ... ,yl,Ut, ... ,uk, there 
is an algorithm which computes a characteristic set ci> of E. 

The algorit._hm discussed in the next subsection involves augmenting E with additional 
polynomials from the ideal generated by E obtained through pseudo-division until we 
have a set Ll such that 

1 E ~ Ll, ' 
2 E and Ll generate the same ideal, and 
3 a minimal chain ci> of Ll pseudo-divides every polynomial in Ll to 0, 

then ci> is a characteristic set of E as well as Ll. We will call Ll to be a saturation of E. 

Since every polynomial q in Ll pseudo-divides to 0 using cl>, i.e. 

It h · · · I1i1 q = q1P1 + · · · + qmPI· 

This implies: 

Zero(E) = Zero( Ll) ~ Zero( ci>), 

and 
I 

Zero(E) = (Zero(ci>) \ Zero(IT Ji)) U U Zero(E U {Ii} ). 
i=l i 

Using Wu's notation, Zero( ci> I I) to stand for Zero( ci>) \Zero(!), the above can be rewritten 
as: 

I 

Zero(E) = Zero( ci> I IT I;) U U Zero(E U { Ii} ). 
i=l 

THEOREM 4.2. Given a finite set E of polynomials, if its characteristic set ci> includes a 
constant (in the case I= n}, then E does not have a common zero. 

li 
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If ci> does not include a constant, it does not mean that E has common zeros. For 
example, consider E = {(x2

- 2x + 1) = 0, (x -1)z-1 = 0}. Under the ordering x-< z, E 
is a characteristic set. The two polynomials do not have a common zero (however, under 
the ordering z-< x, the characteristic set of E includes 1). 

The converse of the above theorem holds only for irreducible characteristic sets. This 
is discussed in a later subsection. 

4.2. ALGORITHMS FOR COMPUTING A CHARACTERISTIC SET 

A characteristic set ci> is computed from a set E of polynomials by successively adjoining 
E with remainder polynomials obtained by pseudo-division. Starting with Eo = E, we 
extract a minimal chain (called a basic set by Wu) from E;, and compute non-zero 

remainders of polynomials in E; with respect to the minimal chain. t If this remainder 
set is nonempty, we adjoin it to E; to obtain E;+ 1 and repeat the computation until we 
have En such that every polynomial in En pseudo-divides to 0 with respect to its minimal 
chain. The set En is a saturation of E and the minimal chain of En is a characteristic 
set of En as well as E. This algorithm is given in chapter 4 in the section Components of 
Finite Systems in Ritt's Differential Algebra (Ritt, 1950, p. 95). The above construction 
terminates since the minimal chain of E; is >- the minimal chain of E;+1 and the ordering 
on chains is well-founded (the maximum size of a chain is I, and the degree of at least 
one polynomial in Ei+l is lower than the degree of the corresponding polynomial in the 
same variable in E;). /' 

In the process of computing a characteristic set from E, if an element oi~lh!{coefficient 
field (a rational number if I= nor a rational function in Q(u1 , • • ·, u,.)) i~ generated as 
a remainder, this implies that E does not have a solution, or is inconsistent. 

Below, we give two algorithms for computing characteristic sets as implemented in 
GeoMeter for geometry theorem proving (Connolly et a/., 1989; Kapur and Wan, 1990). 
These algorithms differ on the order in which remainders are computed and processed. 
The first one is Ritt's algorithmJ 

Char-Set-Breadth-first(H, -<) 

Input: A set of polynomials H and a variable ordering -<. 
Output: A characteristic set for H under the variable ordering -< . 
Functions used: 

Basic-set(E, -<): Described below. 
pseudo-divide-reduction(p, B, -<): successively reduces (pseudo-divides) the polynomial 

p with respect to the polynomials in the basic set B starting with the largest 
polynomial with respect to -<. 

E := 0; R :_= H; 
while R i= 0 do 

t Note that a minimal chain extracted from a set need not be unique. 
t Recall that by the smallest polynomial in a setS, we mean a polynomial p whose highest variable, 

say Yi, is not greater than the highest variable of any other polynomial in S and furthermore, among 
the polynomials with Yi as the highest variable, the degree of p in Yi is the least. 
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E := EUR; 
B :=Basic-set(E, -<); 
R := {q I q =pseudo-divide-reduction(p, B, -<), q # O,p E E \ B}; 

od; 
Return B; 

Basic-set(S, -<) 

Input: A set of polynomials Sand a variable ordering -<. 
Output: A basic set contained in S with respect to -< . 

B := 0; T:= S; 
while T # 0 do 

p :=a smallest polynomial in T;% "smallest" with respect to -<. 
B:=BU{p}; 
T := {q I q E T\ {p},q is reduced with respect top}; 

od; 
Return B; 

The correctness of the above algorithm is based on the fact that q, the remainder from 
pseudo-division of p by a basic set B, is in the ideal generated by B U {p}, which is a 
subideal of the ideal generated by H. An invariant of the while loop in the procedure 
Char-Set-Breadth-first is that the ideal generated by E is the same as the ideal generated 
by H which ifuplies that the zero sets of H and E are the same. If B is the result of Char
Set-Breadth~fi:r'st, then every polynomial in E of the last iteration (which is a saturation 
of 'E as defined in the last subsection) pseudo-divides to 0 using B. Consequently, the 
zero set of B includes the zero set of H as a subset; in particular, the zero set of B minus 
the zero set of the initials of polynomials in B is the zero set of H. 

The breadth-first strategy is quite inefficient for computing a characteristic set for 
detecting inconsistency. In each stage, all possible remainders are computed first before 
the next basic set is computed. It is much better to use a depth-first strategy given below. 
In this strategy, the basic set is updated each time a new remainder is obtained; in this 
way, remainders of lower classes can be obtained more quickly. ' 

Char-Set-Depth-first(H, -<) 

Input: A set of polynomials Hand a variable ordering -<. 
Output: A characteristic set for H with respect to -< . 
Functions used: 

Basic-set(E, -<): same as before. 
pseudo-divide-reduction(p, B, -<): same as before. 
Update-Basic-set(p, B, -<): described below. 

E:=H; 
B :=Basic-set(E, -<); 
ER:=E\B; 
while (ER # 0 and 1 fl. B) do 

S := E\B; 
ER:=0; 
for each p (starting from the smallest polynomial) E S do 

ER := ER U Update-Basic-set(p, B, -<) od; 
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E:=EUER; 
od; 
Return B; 

Updatc-Basic-sct(p, B, ~) 

Input: A polynomial p, a basic set B with respect to a variable ordering ~. 
Output: The set of remainder polynomials generated when p is added to B. As a side 

effect, B is a new basic set. 

r :=pseudo-divide-reduction(p, B, ~); 
if r = 0 then Return 0 
else if r is a constant then 

fi; 

B := {1}; 
Return 0; 

R := {r}; 
T :'= {q I q E B,q is not reduced with respect tor}; 
B := B U {r} \ T; 
for each q (starting from the smallest polynomial) E T do 

R := R U Update-basic-set(q, B, ~) od; 
Return R; 

The breadth-first and depth-first strategies do not always produce the same result. For 
the breadth-first strategy, in generating remainders during each stage,. que remainder 
obtained does not in any way affect the computation of the next remi\in~er. For the 
depth-first strategy however, since one remainder may affect what the JH~xt, remainder 
might be, it is possible that some remainders computed in the breadth-first strategy may 
never be computed in the depth-first strategy. 

4.3. PROVING CONJECTURES FROM A SYSTEM OF EQUATIONS 

A direct way to check whether an equation c = 0 follows (under certain conditions) 
from a system S of equations is to compute a characteristic set <I> = {p1 , • · · , PI} from S 
and check whether c pseudo-divides to 0 with respect to <I>. If c has a zero remainder with 
respect to <I>, then the equation c = 0 follows from <I> under the conditions that none of 
the initials used to multiply c is 0. The algebraic relation between the conjecture c and 
the polynomials in <I> can be expressed as: 

J1i 1 
• • ·fti1 c = q1P1 + · · · + q1P1, 

where Ij is the initial of Pi, j = 1, · · ·, /. 

This approach is used by Wu and Chou for geometry theorem proving. A characteristic 
set is computed from the hypotheses of a geometry problem; then a conjecture i~ pseudo
divided by the characteristic set to check whether the remainder is 0. If the remainder is 
0, the conjecture is said to be generically valid from the hypotheses. 

A refutational way to check whether c = 0 follows from Sis to compute a characteristic 
set of S U {cz- 1 = 0}, where z is a new variable. This approach has also been used for 
geometry theorem proving and discussed in Kapur and Wan (1990). 
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4.4. Wu's STRUCTURE THEOREM 

If a polynomial c representing a geometric conjecture does not pseudo-divide to 0 with 
respect to a characteristic set c), it cannot always be said that c.= 0 does not follow from 
c) or, for that matter, from E from which c) is computed. Some additional properties 
need to be checked. We need to make sure that the characteristic set is irreducible. 

DEFINITION 4.2. A characteristic set ci> = {P1, ···,PI} is irreducible over 
Q[u1, ... , Uk, Y1, ... , y,] if fori= 1 to I, Pi is irreducible overQi-1 where Qo = Q(u1, · · ·, uk) 
and Qi = Qj-1(o:j) is an algebraic extension of Qi-lt obtained by adjoining a root O:j 
of pi= 0 to Qj-1 1 i.e. Pi(o:j) = 0 in Qi for 1 ~ i < j. 

Similarly, if E does not have a solution, either a characteristic set ci> of E includes an 
element Q( u1 , • · · , Uk), or ci> is reducible and each of the irreducible characteristic sets 
includes an element of Q( U1, · · ·, uk)· 

THEOREM 4.3. Given a finite set E of polynomials, if (i) its characteristic set c) is 
irreducible, (ii) c) does not include a constant, and (iii) the initials of the polynomials in 
ci> do not have a common zero with ci>, then E has a common zero. 

To deal with a reducible characteristic set, Ritt and Wu advocated the use of fac
torization over algebraic extensions of Q( u1, · · ·, uk), which is an expensive operation. 
With reducibility check by factorization over extension field, the check for consistency is 
complete using the characteristic set method. t 

In the case that any of the polynomials in a characteristic set can be factored, there 
is a branch for each irreducible factor as the zeros of Pi are the union of the zeros of 
its irreducible factors. Suppose we compute a characteristic set ci> = {p1, · · ·,PI} from E 
such that fori > 0, Plt ···,pi are irreducible over Qo, · · ·, Qi-1, respectively, but Pi+1 
can be factored over Qi. It can be assumed that 

1 . 
g Pi+1 = P i+l · · ·JJ' i+l• 

where g is in Q[u1, · · ·, Uk, Yl, · · ·, Yi], and p1i+l ··.pi i+l E Q[u1, · · ·, uk, Yl, · · ·, Yi, Yi+d 
and these polynomials are reduced with respect to p1 , ···,Pi· Wu (1986a) proved that 

Zero(E) = Zero(E11
) U · · · U Zero(E1i) U Zero(E21

) U · · · U Zero(E2i), 

where E 1h = E U {p\+1}, 1 ~ h ~ j, and E 2h = E U {h}, where h is the initial of 
Ph, 1 ~ h ~ i. So characteristic sets are instead computed from new polynomials sets to 
give a system of characteristic sets. (To make full use of the intermediate computations 
already performed, E above can be replaced by a saturation of E.) The final result of 
this decomposition is a system of irreducible characteristic sets: 

t We would like to remind the reader that we are only considering zeros over the complex numbers 
whereas, strictly speaking, for geometry theorem-proving one must check whether real zeros of the 
hypotheses are contained in the real zeros of the conclusion. 
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where <)i is an irreducible characteristic set and ]j is the product of the initials of all the 
polynomials in <lli. For further details, the reader should consult Wu (1986a). 

Example: Consider the polynomial set 

H = {13z3 + 12x2
- 23xz + 16z2

- 49x + 39z + 40, 

13xz2 - 12x2 + lOxz- 29z2 + 49x - 26z- 53, 

13x3 
- 88x2 + 4xz + 4z2 + 173x - 94, 

yz- y- z + 1, x 2z- x 2
- 3xz + 3x + 2z- 2, 

y2 -1,yx2
- 6yx + 9y- x 2 + 6x- 9}. 

The following characteristic set can be computed from it using the ordering x -< y -< z. 

c = {!1 

h 
fa 

(x 2
- 3x + 2)z- x 2 + 3x- 2, 

(x 2
- 6x + 9)y- x 2 + 6x- 9, 

x6
- 12x5 + 58x4

- 144x3 + 193x2
- 132x + 36}. 

The polynomial fa in C can be factored as (x- 1)2(x- 2)2(x- 3)2 , giving the following 
characteristic sets which can be further decomposed: 

cl {z2 +z+1,y-l,x-1}, 

c2 {z2 +2z+l,y-l,x-2}, 

Ca {z-1,y2 -1,x-3}. 

For a system of polynomials in which no variable has degree more th~ft·~, such as in 
problems arising in Euclidean plane geometry, Chou developed an algQ'rithm to check 
irreducibility and perform factorization in the case of reducibility to gen~rate irreducible 
characteristic sets; the reader may consult Chou (1988). 

4.5. IMPLEMENTATION 

To our knowledge, none of the computer algebra systems supports an implementation 
of characteristic set construction. Characteristic set algorithms can be, however, easily 
implemented in any computer algebra system that supports an efficient implementation 
of pseudo-division. Wu and Chou have reported implementations using which they got 
extremely impressive results for plane geometry problems. GeoMeter has an implemen
tation of the algorithms reported earlier in this section. Considerable work is needed to 
further improve characteristic set algorithms. 

Based on their extensive experience in using the characteristic set construction, Wu and 
Chou have proposed modifications in the definitions of reduction as well as a polynomial 
being reduced with respect to a chain. In Nguyen et al. (1991), a lazy approach to the 
evaluation of the coefficients of a polynomial represented in recursive form is discussed. 

As in Grabner basis computations, the performance of algorithms to compute a char
acteristic set is sensitive to the classification of variables into dependent and independent 
variables, as well as the order of dependent variables. Several heuristics have been pro
posed for deducing a good ordering from a problem formulation in the application of 
geometry theorem proving. · 
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5. Conclusion 

When we started writing this introductory article, we had planned to discuss many 
additional topics. As evident, we will need a lot more space. We-had to omit many issues, 
in particular a detailed discussion of the applications pointing out limitations of these 
approaches as they are currently practiced. We are, however, quite optimistic about the 
potential use of these methods. 

One of the areas that we feel should be investigated is the apparent close relationship 
between the three approaches in the zero-dimensional case. We believe a lot can be 
learned from the study of a relationship among various approaches. In particular, it 
might be possible to achieve better bounds on the worst case complexity of Grabner 
basis and characteristic set computations. We may also have a better idea about why 
these methods work better for sparse systems. It might be possible to apply results 
about redundant computations in Grabner basis theory to resultant computation. On 
the other hand, identification of a close relationship between these approaches might 
give a clue about how techniques that work well for resultant computations can be used 
in Grabner basis and characteristic set methods. Most importantly, there is a need for 
studying techniques for efficiently implementing these algorithms for polynomials arising 
in various application domains. 
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